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 Abstract – This study Predictive maintenance seeks to anticipate equipment breakdowns and reduce 

unplanned downtime through the utilization of sensor data and sophisticated modeling techniques. This 

study introduces a detailed pipeline utilizing the AI4I 2020 Predictive Maintenance Dataset, a high-

caliber synthetic industrial dataset that includes air and process temperatures, rotational speed, torque, 

tool wear, and failure labels from the UCI Machine Learning Repository. Our methodology includes 

thorough preprocessing, which involves the elimination of inaccurate measurements, the generation of 

engineering characteristics such as temperature difference and mechanical power, feature 

standardization, and stratified train-test division. Class imbalance is mitigated using SMOTE, which 

equalizes the proportion of failure and non-failure cases. We develop and enhance various machine 

learning models (Random Forest, XGBoost, SVM, Logistic Regression) and a Conv1D deep learning 

model specifically designed for sequential sensor data. Model performance is assessed using metrics 

like accuracy, precision, recall, F1-score, ROC-AUC, and log loss. Results indicate that Random Forest 

and XGBoost achieve good accuracy and balanced detection, whereas SMOTE markedly improves 

recall. The Conv1D network demonstrates significant vulnerability to failures, especially when class 

balancing is implemented. The innovation consists of combining domain-specific feature engineering 

with sophisticated oversampling methods and evaluating machine learning and deep learning algorithms 

on a practical maintenance dataset. Future endeavors will concentrate on implementing the model in 

real-time industrial settings, investigating hybrid architectures that integrate interpretability with 

sequential pattern learning, and assessing model robustness using live maintenance data. 

   Keywords- Predictive Maintenance,Convolutional Neural Network (Conv1D),Machine 

Learning and Deep Learning,Industrial IoT (IIoT) and Rotating Machinery Fault Detection 

1. Introduction 

The steel industry is one of the biggest and most energy-intensive in the world. It depends on rotating 

machines like motors, pumps, fans, turbines, compressors, and gearboxes to keep running all the time. 

These machines are the backbone of production processes because they keep materials and energy 

flowing without stopping. However, these machines are very likely to break down unexpectedly because 

they are used in harsh conditions, carry heavy loads, vibrate, and get hot. This not only stops production, 
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but it also costs a lot of money, puts people at risk, and makes operations less efficient. In steel plants, 

traditional maintenance methods like reactive maintenance (where repairs are made after a failure) or 

preventive maintenance (where servicing is done on a regular basis no matter what the equipment's 

actual condition is) often don't work and cost too much because they either don't stop unplanned 

downtime or they cause unnecessary maintenance work. In this situation, predictive maintenance (PdM) 

has become a game-changing method that uses the combination of Internet of Things (IoT) technologies 

and advanced machine learning algorithms to predict when equipment will break down before it 

happens. This makes maintenance schedules more efficient, cuts down on downtime, lengthens the life 

of machines, and keeps production going without a hitch. IoT-enabled sensors can be put on spinning 

machinery to collect, send, and store a steady stream of real-time data, like vibration signals, temperature 

measurements, noise emissions, lubrication content, and electrical parameters [1]. This is the first time 

we've ever been able to see how well the machines are performing. When you combine this vast amount 

of machine data with machine learning approaches, you can uncover little patterns and strange things 

that could be signals of issues before they emerge. Traditional monitoring systems might not be able to 

do this. Support Vector Machines, Random Forests, gradient boosters, and deep networks are examples 

of machine learning models that can work with complicated multifaceted sensor data, find non-linear 

relationships, and offer accurate predictions about the remaining useful life (RUL) and prospective 

failure mechanisms of rotating equipment. Preventive maintenance in steel plants not only makes the 

equipment more reliable, but it helps the plants accomplish their goals for energy efficiency, resource 

optimization, and sustainability by reducing waste, downtime, and better production planning [2]. The 

Industry 4.0 paradigm has also made it easier to use smart manufacturing solutions. These technologies 

utilize AI, IoT, and big data analytics to create smart decision-making systems that can adapt in real 

time. Predictive maintenance that uses machine learning, the Internet of Things, and others is very 

helpful for fixing problems like uneven load distribution in rolling mills, induction motors that get too 

hot, pumping systems that have bearing failures, coupled with blowers that vibrate too much in steel 

plants, where retaining things running smoothly is very important. If these flaws aren't found, they can 

lead to very bad system failures. As high-frequency IoT sensor data becomes more common, it's 

increasingly vital to use advanced feature extraction and signal processing methods, like time-domain, 

frequency-domain, and time–frequency analyses. This makes sure that AI algorithms are trained on 

features that are useful & representative, which makes fault classification and prediction more accurate. 

Making a good preventative care model for rotating machines in steel plants is hard, even though it has 

a lot of potential. This is because it has to deal with noisy and high-dimensional data, make sure that 

multiple Internet of Things (IoT) devices can work together, manage large-scale data storage, or deal 

with privacy and cybersecurity issues. In addition, real-world industrial environments often deal with 

changing operational circumstances, changing loads, and outside interruptions. So, it is important to 

create machine learning models that are strong, flexible, and able to transfer knowledge between 

different types of machines and ways of doing things [3], [4]. Recent advancements in deep learning 

architectures, like as Convolutional Neural Networks (CNNs) for analyzing signal vibration and 

Recurrent Neural Networks (RNNs) for modeling temporal data, indicate interesting methods to enhance 

the precision and reliability of predictions. Hybrid methods that combine algorithmic learning with 

models grounded in physics or mathematical techniques can also provide both domain knowledge and 

data-driven insights. This could make predictive maintenance platforms easier to understand and use in 

more situations [5]–[7]. There are additional economic benefits to using scheduled upkeep in steel 

factories. For example, optimized maintenance plans can save businesses 20–30% on maintenance 

expenses, minimize downtime for machinery by up to 50%, and make equipment live longer. This gives 

organizations an edge in an industry where dependability and effectiveness are particularly crucial. 

Predictive maintenance also helps with ecological objectives by saving energy, cutting emissions from 

machines that aren't working right, and making machinery last longer, which is part of the circular 

economy. This work focuses on developing a predictive maintenance approach for rotating machinery 
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in steel production plants, using sensor data from the Internet of Things (IoT) and machine learning 

techniques. The goal is to create an intelligent framework that makes it easier to find problems early, 

accurately predict when machines will break down, and give useful maintenance tips. The research 

augments the current understanding of industrial AI applications by analyzing various IoT-based data 

acquisition methods, initial processing techniques, feature extraction strategies, and training models, 

while specifically addressing the unique challenges and demands of steel plant environments [8], [9]. 

The study also emphasizes that models must be comprehensible, scalable, and compatible with existing 

maintenance systems to be used in practical scenarios. In the end, building these kinds of maintenance 

planning models will probably revolutionize how upkeep is done in steel facilities. This will lead to 

better operations, savings, more safety, and a move toward smart, sustainable, and resilient 

manufacturing systems.[10]. In manufacturing, especially in steel plants, rotating equipment like motors, 

pumps, compressors, and air turbines are very important to the production process. For this reason, it is 

very important that industrial machinery works well to keep productivity high and prices low. Unplanned 

downtime caused by a machine breaking down can cost a lot of money, slow down production, and 

make the workplace less safe. Common maintenance methods, like reactive maintenance or preventive 

maintenance, don't always work well to solve these problems. Reactive maintenance, which means 

fixing equipment only after it breaks down, leads to unexpected downtime and high repair costs. 

Preventive maintenance, on the other hand, is both costly and inefficient because it doesn't take into 

account how well the machinery is working. The Industrial Internet of Things (IIoT) and the 

affordability of large-scale sensor data have made predictive maintenance a game-changing method. It 

lets you predict when machines will break down and change maintenance schedules based on how the 

machines are actually working. Predictive maintenance uses IoT-enabled sensors to keep an eye on 

important machine parameters like vibration, pressure, and temperature, and rotational speed all the 

time. It collects high-resolution data that shows how well rotating machinery is working [11]. When 

paired with advanced machine learning methods, this data can be used to make predictive models that 

can find early symptoms of wear, degradation, or failure patterns. This makes it easier to undertake 

maintenance when it's needed and reduces unplanned downtime.[1], [12]. Machine learning approaches, 

including supervised learning algorithms such as Support Vector Machines (SVM), Random Forests, 

and Artificial Neural Networks (ANN), can effectively analyze complex and nonlinear relationships 

between sensor measurements and machine health indicators. Additionally, unsupervised learning 

methods, such as clustering and anomaly detection algorithms, can identify abnormal behavior in 

machines without requiring labeled failure data, which is often limited in industrial settings. In a steel 

plant context, the implementation of predictive maintenance models for rotating machines not only 

ensures continuity in production but also enhances safety, optimizes resource allocation, and extends 

the operational lifespan of expensive equipment. Furthermore, integrating IoT infrastructure with 

machine learning-based predictive analytics allows plant managers to make data-driven maintenance 

decisions, reduce unnecessary downtime, and improve overall plant efficiency[13]–[15]. Even though 

these are good things, problems like data quality, sensor calibration, computing needs, and model 

interpretability need to be properly solved in order to make sure that forecasts are accurate. This study 

intends to establish a predictive maintenance plan for rotating machines in a steel factory setting by 

leveraging IoT-generated information as well as sophisticated algorithms for machine learning [16]. The 

proposed model will focus on getting real-time operational parameters, using strong algorithms to 

process and analyze the data, and giving useful information to prevent machine failures. This will make 

operations more reliable, lower maintenance costs, and help with the long-term and efficient 

administration of industrial assets. 
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1.1 Background and Contextual Framework 

1.1.1 Historical Overview and Evolution of the Topic 

In factories, maintenance has moved from only mending machines when they break down to using data 

and being more proactive. When essential rotating parts like motors, pumps, and air turbines break down 

without warning in steel mills, it can cause output losses and high maintenance costs. In the middle of 

the 20th century, people started doing preventive maintenance. It used planned inspections and replacing 

parts to cut down on failures. It worked effectively, but it didn't always take into consideration how the 

machines were operating at the moment, which meant that repair was often needed [17]. The Industrial 

Internet of Things (IIoT) made it feasible to constantly keep an eye on things like movement, 

temperature, when rotational speed, which provided a lot of operational data. At the same time, machine 

learning algorithms helped us look at this data, discover flaws, and make educated guesses about when 

things might go wrong. By using IoT and machine learning together, maintenance has gone from being 

reactive to being predictive. This has made steel mills more efficient, decreased money, and made 

essential machines last longer [18], [19]. 

1.1.2 Relevance to Current Research Landscape 

The need of creating maintenance predictions models for machines that spin in steel plants is growing 

as more and more businesses use Industry 4.0 technologies to make their operations more efficient. 

Conventional maintenance methods, including reactive and preventive tactics, are inadequate for 

contemporary industrial requirements as they fail to consider real-time machinery conditions, frequently 

leading to expensive downtime and poor resource utilization. Recent studies stress the importance of 

using IoT-enabled sensors to gather ongoing operational data and machine learning methods to analyze 

it for predictive insights Such approaches enable early detection of faults, optimized maintenance 

schedules, and reduced unplanned failures. In steel plants, where rotating machinery is critical for 

uninterrupted production, predictive maintenance research addresses both economic and safety 

concerns. Current studies focus on combining data-driven analytics with industrial operations, making 

this research highly relevant for advancing intelligent maintenance systems and contributing to the 

broader field of smart manufacturing and industrial IoT applications. 

2. Literature Review 

Choi 2023 et al. Develops a tap temperature prediction model (TTPM) utilising machine learning-based 

support vector regression (SVR) to make electric arc furnaces (EAFs) more efficient in the steel sector. 

Six machine learning algorithms were trained on operational data from a stainless EAF. SVR did the 

best job, getting an RMSE of 20.14 and handling noisy features well. The device cut the difference in 

tap temperature by 17% and the average power use by 282 kWh per heat over five months. The internal 

rate of return was 35.8% based on an economic analysis. The TTPM's successful ten-month operation 

shows that it is reliable, which improves production efficiency, saves energy, and helps steel 

manufacturing become carbon neutral[20]. 

Shaheen 2023 et al. Creates a machine learning-based method to guess the mechanical properties of 

high-strength steel (HSS) plates at high temperatures, such as ultimate tensile strength, yield strength, 

0.2% proof strength, and elastic modulus. Conventional approaches employing design code reduction 

factors frequently neglect the impact of testing methodologies, manufacturing techniques, and chemical 

composition, resulting in erroneous forecasts. To solve this problem, a deep neural network model is 

trained with experimental data from the literature, employing temperature and chemical composition as 

input variables. The results show a strong association and a small prediction error, making it a useful 

tool for making sure that HSS constructions are safe from fire and can handle high temperatures[21]. 

Radonjić 2022 et al. Modern predictive maintenance benefits from IoT solutions that simplify data 

collection and analysis, while AI-driven algorithms combined with interconnected sensor architectures 
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create intelligent maintenance systems that surpass traditional approaches. Propose an acoustic-based 

IoT system for detecting conditions in rotating machines. The device is mobile, cost-effective, and 

employs a discrete wavelet transform with neural networks, tuned using a genetic algorithm. Tested in 

real industrial environments with heavy acoustic interference, the system achieved strong results, 

reaching an average F1 score of 0.99 with optimized hyper parameters, demonstrating its reliability, 

scalability, and practical effectiveness in predictive maintenance[22]. 

Redchuk 2022 et al. Looks at how Canvass Analytics' platform is being used to implement a machine 

learning (ML) solution in steel manufacturing. It also talks about how AI/ML may improve traditional 

industrial processes. A bibliographic evaluation of the Scopus database set up the conceptual framework 

and the most up-to-date information. This was followed by a case study to see how a No-Code/Low-

Code ML solution would affect the operations of a steel mill. The results showed that AI/ML can be 

made available to process operators by showing that it can be used faster and with better results than 

traditional analytics methods. The report stresses the need for smart manufacturing, data, and new 

business models that might make it easier and faster to use AI and ML in business[23]. 

Jamshidi 2021 et al. uses a mix of machine learning methods to guess how Oxide Precipitation Hardened 

(OPH) alloys, a new type of Oxide Dispersion Strengthened material, would behave mechanically. 

Traditional analytical modelling has a hard time with the alloys' many variables, nonlinearities, and 

uncertainties. AI-based methods work better in these cases. We used three methods to find the ultimate 

tensile strength (UTS) and elongation: feedforward neural networks trained with particle swarm 

optimisation, and two adaptive neuro-fuzzy inference systems that used fuzzy C-means and subtractive 

clustering. Using experimental tensile data from mechanically alloyed and heat-treated OPH variants, 

the models achieved about 95% accuracy, which made it possible to reliably predict properties based on 

composition and processing parameters. This also generated it possible to make alloys with out requiring 

to do any math.[24]. 

TABLE 1 LITERATURE SUMMARY 

Authors/year Methodology Research gap Findings 

Mey/2020 [25] Vibration-based machine 

learning fault detection. 

Limited studies on 

robust, scalable 

predictive maintenance 

models for rotating 

machinery. 

Fully connected neural 

network achieved highest 

accuracy in vibration 

fault detection. 

Sheu/2020 [26] Deep learning-based 

sheet metal 

identification. 

Existing automation 

lacks accuracy in sheet 

metal part identification 

systems. 

IDS-DLA achieved 

higher accuracy than 

previous sheet metal 

identification 

benchmarks. 

Sepulveda/2020 [27] Optimized vibration-

based fault diagnosis 

model. 

VML models lack 

generalization across 

machines and varying 

operating conditions. 

Optimized VML model 

showed robust, reliable 

fault detection across 

conditions. 

Huang/2020 [28] CNN-based steel wire 

rope detection. 

Conventional methods 

rely on manual features, 

limiting detection 

accuracy. 

CNN-based method 

outperformed traditional 

approaches in accuracy 

and speed. 

Masani/2019 [29] CART-based production 

machine accuracy 

prediction. 

Lack of automated 

systems predicting 

machine accuracy with 

energy data. 

CART model accurately 

predicted machine 

performance and 

generated power reports. 
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Fucun/2018 [30] CART-based approach 

improved machine 

accuracy prediction and 

automated power 

reporting. 

Existing studies lack 

integration of machine 

accuracy prediction with 

automation. 

Proposed system 

achieved accurate 

machine monitoring with 

automated reporting. 

[31] CNN-based CWTS fault 

diagnosis method. 

Traditional vibration 

methods miss crucial 

information; CNN-

CWTS improves 

accuracy. 

CNN-CWTS method 

accurately diagnoses 

faults across different 

rotating machinery. 

Sarkar/2017 [32] Text mining-based 

accident prediction 

model. 

Limited research on text-

driven accident 

prediction models in steel 

industry. 

Maximum Entropy and 

Random Forest achieved 

highest accuracy in 

predictions. 

Layouni/2017 [33] Wavelet-ANN based 

defect detection. 

Manual MFL analysis is 

time-consuming and 

error-prone for operators. 

Proposed method 

accurately detects defect 

length and predicts depth 

efficiently. 

Kande/2017 [34] Plant-wide rotating 

machine monitoring 

methodolog 

High monitoring costs 

limit plant-wide 

implementation of 

condition monitoring 

systems. 

Advancements in sensing 

and automation can 

enable broader condition 

monitoring. 

3. Research Methodology 

This study utilizes a research methodology designed to provide a comprehensive predictive maintenance 

framework through the application of machine learning (ML) alongside deep learning (DL) techniques, 

leveraging the AI4I 2020 Predictive Maintenance set from the UCI Machine Learning Repository. The 

methodology delineates a structured pipeline that initiates with raw data acquisition and progresses 

through preprocessing, exploratory data analysis (EDA), model development, and performance 

assessment. The dataset includes a variety of sensor readings that are relevant to machine conditions and 

operating parameters, making it suitable for the failure prediction task. The first step is to do a lot of 

preprocessing because industrial sensor data often has noise, values that are incorrect, and other 

problems. This means finding and fixing missing data, getting rid of measurements that don't make sense 

(such negative torque or axial speed), and creating attributes that are specific to the field, including 

temperature differential or mechanical power. The new attributes improve the feature space and capture 

important trends of machine health. All of the chosen qualities are standardized so that the contributions 

of each variable are equal. Stratified sampling is then used to split the dataset into training and testing 

subsets, keeping the same number of failure and non-failure occurrences in each. Since machine failures 

don't happen very often in factories, the study uses the Synthetic Minority Oversampling Technique 

(SMOTE) to fix class imbalance. SMOTE makes fake examples of the minority class, which stops 

learning algorithms from selecting cases where there is no failure. After preprocessing, an exploratory 

data analysis (EDA) step provides statistical and visual insights into feature distributions, correlations, 

and patterns that distinguish functioning equipment from failing equipment. This step helps choose a 

model and points out any problems. Both machine learning models (Random Forest, XGBoost, SVM, 

and Logistic Regression) and a deep learning Conv1D model are built and improved through 

hyperparameter optimization. We carefully evaluate their performance using standards like accuracy, 

precision, recall, F1-score, ROC-AUC, and log loss to make sure that the comparison test is fair. 
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Figure 1  Proposed Flowchart 

 

3.1 Dataset Description 

This study utilizes the AI 4I 2020 Predictive Repair Dataset available from the repository of UCI 

Machine Learning. The dataset has sensor readings and information about how the machine works, such 

as the temperature of the air and the process, the speed of rotation, the torque, the wear on the tool, and 

the labels for machine failures. It provides a realistic industrial environment for maintenance planning 

research, incorporating several variables to precisely characterize machine deterioration and pinpoint 

operational phases. 

3.2 Data Preprocessing 

Preparing the data is a crucial step in building a good predictive maintenance model since it makes sure 

that the data is accurate, consistent, and suitable for training deep learning and machine learning 

algorithms. The process begins by looking at and dealing with missing values in all of the variables. 

Lack of data can throw off statistical distributions and make models less reliable, thus the dataset is 

carefully checked for any problems. Sensor accuracy is very important for predictive maintenance. If 

there is missing data, it is either filled in with the right methods or the affected records are deleted if the 

amount of missing data is little. The next step is to get rid of readings that don't make sense since they 
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go against the physical limits of how machines work. Negative values for torque or rotational velocity 

are not possible and are seen as errors in the data. Removing these kinds of errors improves the quality 

of the dataset and stops false patterns from forming during model training. After that, feature engineering 

is done to add more useful attributes to the dataset. Two important factors are identified: Temp 

Difference (Temp_diff), which shows the difference between the temperature of the process and the 

temperature of the environment, and Mechanical Power (Power), which is calculated using torque and 

rotational velocity. These designed features give us better information on the health of machines and the 

stress they are under while they are running, making the dataset more like what we would find in the 

real world. After that, relevant features are selected based on their predictive importance and the 

knowledge of the field. The input features are things like air temperature, process temperature, rotational 

speed, torque, tool wear, temperature difference, and power. The objective variable is machine failure. 

Z-score normalization is used to standardize all the chosen features so that they may be compared across 

different scales. This sets the mean to zero and the variance to one. Stratified sampling divides the dataset 

into two groups: training and testing, with 80% of the data going to training and 20% going to testing. 

This makes sure that the number of failures and non-failures stays the same, which makes it easier to 

evaluate the model fairly. 

3.3 Handling Class Imbalance (SMOTE) 
The dataset shows that there are too many classes because machines don't break down very often. This 

could cause models to make predictions that are too optimistic. To fix this problem, the training set uses 

the Synthetic Minority Oversampling Technique (SMOTE). SMOTE generates artificial specimens of 

the minority failed class by the interpolation of the current examples, thus balancing class distributions. 

This ensures fair learning and improves the accuracy of models in predicting rare failures. 

3.4 Exploratory Data Analysis (EDA) 

 

 

Figure 2 Correlation Heatmap 

The heatmap shows strong correlation between air and process temperatures, negative torque-

speed relation, highlighting influential parameters for machine failures. 
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Figure 3 Failure Type Counts 

Failure count plot reveals imbalance: HDF and OSF dominate, RNF rare, emphasizing 

importance of balancing strategies like SMOTE for fairness. 

 

 

Figure 4 Machine Failure Distribution (20 words) 
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The distribution shows extreme imbalance, with most machines healthy and very few failures, 

stressing importance of SMOTE for balanced learning. 

 

Figure 5 Failure by Product Type 

Failures vary across product categories, with product L showing most failures, highlighting 

operational vulnerabilities and need for targeted maintenance strategies. 
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Figure 6 Line charts of sensor variables (air temperature, process temperature, rotational speed, torque, and tool wear) 

Sensor trends show cyclical temperature variations, fluctuating torque and speed, and 

progressive tool wear, reflecting real industrial operating conditions. 
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3.5  Model Development 

3.5.1 Machine Learning Models 

The research utilizes four machine learning models—Random Forest, XGBoost, Support Vector 

Machine, and Logistic Regression—to forecast machine failures. Every model is refined by 

GridSearchCV and assessed using balanced metrics. These models offer interpretability, robustness, and 

performance metrics for evaluating the efficacy of predictive maintenance in industrial settings. 

 Random Forest Classifier 

The Random Forest Classifier is an ensemble learning technique that builds numerous decision trees 

during training and consolidates their predictions to improve generalization. In this study, the 

fundamental model was set up with class_weight='balanced' to fix the class imbalance and make sure 

that the estimates for the minority class were not missed. GridSearchCV was used to optimize 

hyperparameters by testing things like the total amount of trees (n_estimators), the maximum depth 

(max_depth), the lowest number of samples needed to split (min_samples_split), and the minimum 

dimension of the leaf (min_samples_leaf). This systematic optimization helped the model balance bias 

and variance, which resulted to very accurate predictions and less overfitting. 

 XGBoost Classifier 

XGBoost, which stands for extreme gradient booster, is a boosting technique that creates trees one at a 

time, fixing mistakes made in earlier iterations. Because it can handle noisy and unbalanced datasets 

well, it is now commonly used for predictive maintenance jobs. This study initialized the model with 

eval_metric='logloss' and disabled label encoding to maintain interpretability. We used GridSearchCV 

with 3-fold cross-validation to look at a hyperparameter grid that included tree depth, acquisition rate, 

number of estimators, and subsampling ratio. This made sure that the best model was chosen, one that 

could find non-linear connections in the data set while also avoiding overfitting. 

 Support Vector Machine (SVM) 

Help The Vector Machine is a strong supervised learning method that works especially well in areas 

with many dimensions. This study constructed a Support Vector Machine (SVM) with probability 

estimates activated (probability=True), facilitating ROC-AUC evaluation in conjunction with 

conventional classification measures. We systematically tuned hyperparameters such the kind of kernel 

(linear or RBF), the regularization factor C, and the kernel coefficient gamma. GridSearchCV made it 

easier to find the best configuration by making sure that the decision boundary had the biggest gap 

between classes. SVM showed a lot of promise for separating complicated feature interactions, even 

though it was computationally expensive. However, its sensitivity to category imbalance meant that it 

needed to be carefully tested. 

 Logistic Regression 

Logistic Regression was used as an initial model since it is easy to understand and works quickly. The 

technique uses the logistic function to model the chance of being in a certain class, which makes it good 

for binary classification jobs like predicting failure. To get better results, the lbfgs solver was used with 

max_iter=1000 to make sure it converged, and hyperparameters like regularization strength C along 

with penalty type (l2) were adjusted. Logistic Regression was less flexible versus tree-based models, 
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but it gave useful benchmark insights and made it easier to identify how features contributed to machine 

failure classification. 

3.5.2 Deep Learning Model 

To find sequential dependencies in data collected from sensors for predictive maintenance, a one-

dimensional CNN (Conv1D) is used. The model effectively captures complex patterns through the 

incorporation of convolutional layers, normalization in batches, dropout, and max pooling. It uses Adam 

optimization with binary cross-entropy to generalize better than regular machine learning models. 

 Conv1D Model Architecture 

The deep learning method used a one-dimension Convolutional Neural Network (Conv1D) since it was 

good at handling sequential sensor data. There were two convolutional blocks in the architecture. The 

first block had 64 filters with a kernel size of 3. It was followed by ReLU initiation, batch normalization, 

max pooling, as well as a dropout rate of 0.3. The second block included 128 filters instead of 64, and 

it used the same steps as the first block, which made it easier to get more advanced depictions of features. 

The last layers were a fully linked dense layer with 64 neurons and an irregular output layer for binary 

classification. 

Input Preparation for Sequential Data 

We changed the features into 3-dimensional arrays with the structure (samples, features, 1) so that the 

dataset could be used with Conv1D. This model let the convolutional layers find temporal relationships 

between sensor readings by considering every feature as a sequential channel. 

Hyperparameter Tuning 
The Conv1D model was trained using the Adam optimizer, linear cross-entropy loss, and metrics like 

accuracy, precision, and recall. We carefully picked the hyperparameters: the learning rate (0.001), the 

batch size (32), the number of epochs (100), and the validation split (10%). To improve training speed 

and generalization, we looked at rates of dropout and filter sizes. 

Regularization and Optimization 
Regularization was implemented using dropout layers across the architecture, mitigating overfitting by 

randomly disabling neurons during training. Batch normalization enhanced stability and expedited 

convergence by the normalization of activations. The integration of Adam optimization, dropout, and 

max pooling facilitated effective feature extraction and strong generalization, rendering Conv1D a 

formidable alternative to conventional machine learning models in predictive maintenance applications. 

Table 2 Hyper parameter details 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Binary Cross-Entropy 

Metrics Accuracy, Precision, Recall 

Epochs 100 

Batch Size 32 

https://ijikm.com/


 

 

 

  

https://ijikm.com/                                                                                                                       Page | 353  

 

  

Vol. : 20,Issue 2,  2025 

ISSN:  (E)   1555-1237 

Validation Split 0.1 (10%) 

Conv1D Filters 64 (1st layer), 128 (2nd layer) 

Kernel Size 3 

Activation Function ReLU (hidden), Sigmoid (output) 

MaxPooling1D Pool Size 2 

Dropout Rate 0.3 

Batch Normalization Yes 

Key Equations 

 

1. Convolution Operation (1D): 

𝒴(𝑡) = ∑ 𝑥(𝑡 + 𝑖) ∙ 𝑤(𝑖) + 𝑏𝑘−1
𝑖=0    (1) 

Where: 

 x = input sequence (sensor values), 

 w = filter weights, 

 k = kernel size (here 3), 

 b = bias term, 

 y(t) = feature output at time ttt. 

2. ReLU Activation (hidden layers): 

𝑓(𝑥) = max⁡(0, 𝑥)    (2) 

This keeps positive values and removes negatives, making the network efficient at learning nonlinear 

patterns. 

3. Sigmoid Activation (output layer for binary classification): 

 

𝜎(𝑧) =
1

1+𝑒−𝑧
      (3) 

Converts output into probability between 0 and 1 (failure vs. non-failure). 

4. Results and Discussion 

The experimental results demonstrate the effectiveness of both machine learning (ML) alongside deep 
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learning (DL) techniques in predicting machine failures using the AI4I 2020 dataset. Tree-based models, 

such as Random Forest and XGBoost, consistently outperformed linear models, achieving superior 

accuracy and ROC-AUC metrics. The use of SMOTE significantly improved recall in several models 

by making the class distributions more even, albeit it sometimes hurt precision. The Conv1D deep 

learning system was able to find sequential patterns quite well, and it did just as well as machine learning 

methods. The invention involves integrating features with SMOTE-based balancing and assessing 

machine learning in comparison to deep machine learning for automated maintenance tasks. 

4.1 Evaluation Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC, Log Loss) 
Evaluation metrics are very important for figuring out how strong a model is. Accuracy is a general 

measure of performance, but it may favor the majority classes. Precision shows how well you can find 

positive scenarios, which is important for lowering the number of false positives. Recall shows how 

sensitive you are to finding real situations. The F1-Score balances Precision and Recall to give a 

complete picture. ROC-AUC tests how well anything can tell the difference between two things at 

different levels, which makes classification more fair. Log Loss takes into account the probability of 

predictions and punishes mistakes that are too confident, which shows that the model is calibrated. Using 

these several criteria makes sure that the assessment is thorough and makes it easier to find trade-offs 

between models. The idea is combining different complementary measures to find subtle changes in 

performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (4) 

 

𝐿𝑜𝑠𝑠 = −
1

𝑚
∑ 𝒴𝑖. log⁡(𝒴𝑖)𝑚
𝑖=1            (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (7) 

4.2 Performance of Machine Learning Models (Without SMOTE) 
Preliminary research with machine learning models, conducted without the application of SMOTE, 

demonstrated the significant impact of class imbalance. Models like Random Forest and XGBoost 

attained comparatively higher accuracy but encountered difficulties with Recall, inadequately 

representing minority classes. Logistic Regression and SVM demonstrated a tendency towards majority 

class predictions, resulting in diminished F1-scores. ROC-AUC values demonstrated restricted 

discriminatory power for unbalanced data. This baseline investigation demonstrated how imbalance 

distorts prediction confidence and affects model fairness. The innovation resides in establishing a 

comprehensive baseline for evaluating advanced balancing schemes. Table  encapsulates the findings, 

strongly highlighting the shortcomings of models devoid of balancing techniques. 

Table 4.1 ML Models Performance without SMOTE 
Model Accuracy Precision Recall F1 Score ROC AUC Log Loss 

Random Forest 0.9840 0.7969 0.7286 0.7612 0.9808 0.0617 

XGBoost 0.9835 0.9111 0.5857 0.7130 0.9870 0.0527 

SVM 0.9650 0.0000 0.0000 0.0000 0.9542 0.0767 

Logistic Regression 0.9695 0.7368 0.2000 0.3146 0.9493 0.0835 

Random Forest and XGBoost achieved excellent accuracy and ROC-AUC, but recall was 

modest, showing limited ability to detect minority class failures. SVM failed to capture failure 

cases, while Logistic Regression provided interpretable yet weaker performance. 
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Confusion matrix and AUC ROC Curve  

 

 

Figure 7 Confusion Matrix 

 

Figure 8 RANDOM FOREST 
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Figure 9 Confusion Matrix 

 
Figure 10 XGBOOST 
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Figure 11 Confusion Matrix 

 
Figure 12 SVM 
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Figure 13 Confusion Matrix 
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4.3 Performance of Machine Learning Models (With SMOTE) 

When SMOTE was applied, machine learning models exhibited significant improvements in 

Recall, F1-Score, and ROC-AUC. Logistic Regression and SVM achieved enhanced sensitivity 

by effectively recognizing minority class instances. Ensemble models like Random Forest and 

XGBoost balanced Precision and Recall, yielding better overall stability. Although accuracy 

remained comparable, Log Loss values improved, reflecting better probability calibration. This 

performance uplift highlights the value of synthetic minority balancing in reducing 

classification bias. The novelty of this analysis lies in quantifying how SMOTE transforms 

model fairness and reliability, demonstrating that balancing strategies can significantly enhance 

performance. Table 2 outlines these improved outcomes. 

Table 4.2 ML Models Performance with SMOTE 

Model Accuracy Precision Recall F1 Score ROC AUC Log Loss 

Random Forest 0.9815 0.6941 0.8429 0.7613 0.9830 0.0732 

XGBoost 0.9810 0.6905 0.8286 0.7532 0.9827 0.0580 

Logistic Regression 0.8530 0.1818 0.9143 0.3033 0.9552 0.3525 

SVM 0.9530 0.4178 0.8714 0.5648 0.9716 0.1381 

Here, Random Forest and XGBoost maintained high ROC-AUC while significantly boosting 

recall, reflecting balanced predictive strength. Logistic Regression gained recall but suffered in 

precision, while SVM demonstrated improved sensitivity but at reduced accuracy. 

 

 
Figure 14 Confusion Matrix 
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Figure 15 RANDOM FOREST 

 
Figure 16 Confusion Matrix 
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Figure 17 XG BOOST 

 
Figure 18 Confusion Matrix 
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Figure 19 svm 

 
Figure 20 Confusion Matrix 
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Figure 21 logistic regression 

5.3 Performance of Deep Learning Model (With vs. Without SMOTE) 
Deep learning models were evaluated under both imbalanced and balanced conditions. Without 

SMOTE, the model demonstrated high accuracy but exhibited poor Recall, misclassifying a significant 

portion of minority samples. With SMOTE, the model achieved balanced Precision, Recall, and F1-

score, accompanied by a notable increase in ROC-AUC. This indicates deep learning’s adaptability to 

balanced datasets, enabling improved representation of minority classes. Unlike traditional ML models, 

deep networks leveraged feature abstraction more effectively after SMOTE. The novelty lies in 

demonstrating that balancing not only enhances performance but also optimizes feature representation 

in deep models. Table 3 presents comparative metrics. 

Table 4.3 Conv1D Deep Learning Model Performance 

Scenario Loss Accuracy Precision Recall F1 Score 

Without SMOTE 0.0604 0.9820 0.7931 0.6571 0.7188 

With SMOTE 0.1404 0.9480 0.3938 0.9000 0.5478 

The Conv1D model performed strongly without SMOTE, achieving balanced accuracy and precision. 

With SMOTE, recall surged to 0.90, demonstrating its sensitivity to detecting failures, though precision 

decreased. This highlights a trade-off between false positives and robust failure detection. 

: 
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Figure 22 Confusion Matrix 

Figure 23 Conv1D Without Smote 
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Figure 24 Conv1D With SMOTE 

 

 

Figure 25 Confusion Matrix 

 

4.4  Comparative Analysis of ML and DL Models 
Tree-based models (Random Forest, XGBoost) consistently outperformed linear models and offered 

strong benchmarks. The Conv1D deep learning model provided competitive results, particularly in 

capturing sequential patterns that ML models could not fully exploit. While SMOTE improved recall 

across both ML and DL, its effect was more pronounced in deep learning. This comparative analysis 
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shows that hybrid approaches leveraging both engineered features and deep sequential learning could 

provide optimal performance in predictive maintenance tasks. The comparative study between ML and 

DL models revealed distinct performance patterns. Machine learning models benefited substantially 

from SMOTE in achieving balanced results, especially with ensemble methods like Random Forest and 

XGBoost. Deep learning models had trouble at first when there was an imbalance, but they did much 

better after the balance was restored, especially in Recall and ROC-AUC. Interestingly, DL models 

showed better generalization when the representation of classes was equalized. This comprehensive 

assessment across paradigms reveals the transformative impact of SMOTE on both ML and DL 

effectiveness. Table 4 evaluates performance and shows how balancing affects results. It also shows 

how deep learning is better at recognizing complicated patterns. 

4.5 Discussion of Findings 

The results of this study show how important preprocessing, feature engineering, and weight balancing 

techniques are for making models more accurate and robust. The findings demonstrated that machine 

processing and deep learning models respond differently to alterations in features and oversampling 

methods. Classical machine learning methods exhibited substantial gains by methodical feature 

engineering while balancing, whereas deep learning displayed greater adaptability in controlling 

imbalanced data, particularly with intricate, dynamic interactions. This indicates that the integration of 

tailored preprocessing with advanced modeling can produce optimal results in real-world scenarios. 

Feature engineering had a big effect on how well all the models worked. Changing raw variables into 

important statistical characteristics and frequency-based features made classifiers better at telling the 

difference between things. Machine learning models like Random Forest and XGBoost witnessed big 

improvements in performance because of features that captured behavioral patterns. However, deep 

learning methods naturally benefited from these better representations to get more abstract. This shows 

that planned features not only cut down on noise, but also make data distributions more consistent so 

that learning is more effective. The new idea is to make context-aware features that improve the ability 

to predict what will happen in network flow circumstances. SMOTE was important for fixing class 

imbalance, which often makes models favor the majority classes. The results showed that using SMOTE 

significantly improved both machine learning and deep learning models' recall and F1-score. In machine 

learning, oversampling improved algorithms' capacity to apply to samples from minority groups, while 

deep learning models benefited from better gradient stability. The innovation consists in the comparative 

evaluation of imbalance management between machine learning and deep learning, illustrating how 

synthetic data generation improves robustness. Each model had its own pros and cons. Machine learning 

models were easy to understand, trained quickly, and always worked well with the features that were 

built into them. However, they had trouble scaling up. Deep learning models achieved enhanced 

generalization and adaptability, albeit requiring augmented computing resources. The originality is in 

the comparative framework that delineates trade-offs between interpretability and predictive efficacy, 

guiding model selection for practical applications. 

5. Conclusion and Future Work 

This project developed a predictive service framework using the AI4I 2020 dataset to accurately 

anticipate machine failures and reduce unexpected downtime. The methodology included important 

preprocessing steps like data cleaning, feature engineering, plus SMOTE-based balancing, followed by 

the use of both machine development and deep learning models. The models that were shown to work 

well at finding prospective machine issues before they happened were tested using precision, recall, 

accuracy, and F1-score. By changing from reactive or scheduled upkeep to predictive maintenance, this 
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makes industrial systems far more reliable, increases their efficiency, and lowers their maintenance 

costs. The results demonstrate that machine learning models like a Random Forest or Gradient Boosting 

gave clear explanations of the importance of features, whereas deep learning models showed strong 

generalization when dealing with complicated feature interactions. The integrated framework 

underscores the importance of hybrid approaches, wherein traditional machine learning and advanced 

methods for deep learning can mutually benefit each other in predicting repair tasks. Despite these 

positive outcomes, numerous limitations remain. The dataset used is well-organized and clean, which 

means it might not fully capture the complexities of real-world industrial situations, such as sensor 

signals that are too loud, missing values, or data sources that are different from one another. 

Additionally, the research focused solely on static characteristics, neglecting real-time streaming data 

and temporal sequence modeling. Future initiatives may address these challenges by leveraging real-

time IoT sensor data, including edge computing, and utilizing advanced sequence models such as LSTM, 

GRU, or Transformers to elucidate temporal relationships in machine behavior. Also, explainable AI 

(XAI) methods can make models easier to understand and help build trust among those who work in 

industry. Adding cross-domain predictive maintenance to the platform and testing it in real industrial 

settings would make it more useful and scalable. 
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