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Abstract — This study Predictive maintenance seeks to anticipate equipment breakdowns and reduce
unplanned downtime through the utilization of sensor data and sophisticated modeling techniques. This
study introduces a detailed pipeline utilizing the Al4l 2020 Predictive Maintenance Dataset, a high-
caliber synthetic industrial dataset that includes air and process temperatures, rotational speed, torque,
tool wear, and failure labels from the UCI Machine Learning Repository. Our methodology includes
thorough preprocessing, which involves the elimination of inaccurate measurements, the generation of
engineering characteristics such as temperature difference and mechanical power, feature
standardization, and stratified train-test division. Class imbalance is mitigated using SMOTE, which
equalizes the proportion of failure and non-failure cases. We develop and enhance various machine
learning models (Random Forest, XGBoost, SVM, Logistic Regression) and a Conv1D deep learning
model specifically designed for sequential sensor data. Model performance is assessed using metrics
like accuracy, precision, recall, F1-score, ROC-AUC, and log loss. Results indicate that Random Forest
and XGBoost achieve good accuracy and balanced detection, whereas SMOTE markedly improves
recall. The ConvlD network demonstrates significant vulnerability to failures, especially when class
balancing is implemented. The innovation consists of combining domain-specific feature engineering
with sophisticated oversampling methods and evaluating machine learning and deep learning algorithms
on a practical maintenance dataset. Future endeavors will concentrate on implementing the model in
real-time industrial settings, investigating hybrid architectures that integrate interpretability with
sequential pattern learning, and assessing model robustness using live maintenance data.

Keywords- Predictive Maintenance,Convolutional Neural Network (ConvlD),Machine
Learning and Deep Learning,Industrial 10T (110T) and Rotating Machinery Fault Detection

1. Introduction

The steel industry is one of the biggest and most energy-intensive in the world. It depends on rotating
machines like motors, pumps, fans, turbines, compressors, and gearboxes to keep running all the time.
These machines are the backbone of production processes because they keep materials and energy
flowing without stopping. However, these machines are very likely to break down unexpectedly because
they are used in harsh conditions, carry heavy loads, vibrate, and get hot. This not only stops production,
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but it also costs a lot of money, puts people at risk, and makes operations less efficient. In steel plants,
traditional maintenance methods like reactive maintenance (where repairs are made after a failure) or
preventive maintenance (where servicing is done on a regular basis ho matter what the equipment's
actual condition is) often don't work and cost too much because they either don't stop unplanned
downtime or they cause unnecessary maintenance work. In this situation, predictive maintenance (PdM)
has become a game-changing method that uses the combination of Internet of Things (1oT) technologies
and advanced machine learning algorithms to predict when equipment will break down before it
happens. This makes maintenance schedules more efficient, cuts down on downtime, lengthens the life
of machines, and keeps production going without a hitch. loT-enabled sensors can be put on spinning
machinery to collect, send, and store a steady stream of real-time data, like vibration signals, temperature
measurements, noise emissions, lubrication content, and electrical parameters [1]. This is the first time
we've ever been able to see how well the machines are performing. When you combine this vast amount
of machine data with machine learning approaches, you can uncover little patterns and strange things
that could be signals of issues before they emerge. Traditional monitoring systems might not be able to
do this. Support Vector Machines, Random Forests, gradient boosters, and deep networks are examples
of machine learning models that can work with complicated multifaceted sensor data, find non-linear
relationships, and offer accurate predictions about the remaining useful life (RUL) and prospective
failure mechanisms of rotating equipment. Preventive maintenance in steel plants not only makes the
equipment more reliable, but it helps the plants accomplish their goals for energy efficiency, resource
optimization, and sustainability by reducing waste, downtime, and better production planning [2]. The
Industry 4.0 paradigm has also made it easier to use smart manufacturing solutions. These technologies
utilize Al, 10T, and big data analytics to create smart decision-making systems that can adapt in real
time. Predictive maintenance that uses machine learning, the Internet of Things, and others is very
helpful for fixing problems like uneven load distribution in rolling mills, induction motors that get too
hot, pumping systems that have bearing failures, coupled with blowers that vibrate too much in steel
plants, where retaining things running smoothly is very important. If these flaws aren't found, they can
lead to very bad system failures. As high-frequency loT sensor data becomes more common, it's
increasingly vital to use advanced feature extraction and signal processing methods, like time-domain,
frequency-domain, and time—frequency analyses. This makes sure that Al algorithms are trained on
features that are useful & representative, which makes fault classification and prediction more accurate.
Making a good preventative care model for rotating machines in steel plants is hard, even though it has
a lot of potential. This is because it has to deal with noisy and high-dimensional data, make sure that
multiple Internet of Things (loT) devices can work together, manage large-scale data storage, or deal
with privacy and cybersecurity issues. In addition, real-world industrial environments often deal with
changing operational circumstances, changing loads, and outside interruptions. So, it is important to
create machine learning models that are strong, flexible, and able to transfer knowledge between
different types of machines and ways of doing things [3], [4]. Recent advancements in deep learning
architectures, like as Convolutional Neural Networks (CNNs) for analyzing signal vibration and
Recurrent Neural Networks (RNNs) for modeling temporal data, indicate interesting methods to enhance
the precision and reliability of predictions. Hybrid methods that combine algorithmic learning with
models grounded in physics or mathematical techniques can also provide both domain knowledge and
data-driven insights. This could make predictive maintenance platforms easier to understand and use in
more situations [5]-[7]. There are additional economic benefits to using scheduled upkeep in steel
factories. For example, optimized maintenance plans can save businesses 20-30% on maintenance
expenses, minimize downtime for machinery by up to 50%, and make equipment live longer. This gives
organizations an edge in an industry where dependability and effectiveness are particularly crucial.
Predictive maintenance also helps with ecological objectives by saving energy, cutting emissions from
machines that aren't working right, and making machinery last longer, which is part of the circular
economy. This work focuses on developing a predictive maintenance approach for rotating machinery
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in steel production plants, using sensor data from the Internet of Things (IoT) and machine learning
techniques. The goal is to create an intelligent framework that makes it easier to find problems early,
accurately predict when machines will break down, and give useful maintenance tips. The research
augments the current understanding of industrial Al applications by analyzing various loT-based data
acquisition methods, initial processing techniques, feature extraction strategies, and training models,
while specifically addressing the unique challenges and demands of steel plant environments [8], [9].
The study also emphasizes that models must be comprehensible, scalable, and compatible with existing
maintenance systems to be used in practical scenarios. In the end, building these kinds of maintenance
planning models will probably revolutionize how upkeep is done in steel facilities. This will lead to
better operations, savings, more safety, and a move toward smart, sustainable, and resilient
manufacturing systems.[10]. In manufacturing, especially in steel plants, rotating equipment like motors,
pumps, compressors, and air turbines are very important to the production process. For this reason, it is
very important that industrial machinery works well to keep productivity high and prices low. Unplanned
downtime caused by a machine breaking down can cost a lot of money, slow down production, and
make the workplace less safe. Common maintenance methods, like reactive maintenance or preventive
maintenance, don't always work well to solve these problems. Reactive maintenance, which means
fixing equipment only after it breaks down, leads to unexpected downtime and high repair costs.
Preventive maintenance, on the other hand, is both costly and inefficient because it doesn't take into
account how well the machinery is working. The Industrial Internet of Things (11oT) and the
affordability of large-scale sensor data have made predictive maintenance a game-changing method. It
lets you predict when machines will break down and change maintenance schedules based on how the
machines are actually working. Predictive maintenance uses loT-enabled sensors to keep an eye on
important machine parameters like vibration, pressure, and temperature, and rotational speed all the
time. It collects high-resolution data that shows how well rotating machinery is working [11]. When
paired with advanced machine learning methods, this data can be used to make predictive models that
can find early symptoms of wear, degradation, or failure patterns. This makes it easier to undertake
maintenance when it's needed and reduces unplanned downtime.[1], [12]. Machine learning approaches,
including supervised learning algorithms such as Support Vector Machines (SVM), Random Forests,
and Artificial Neural Networks (ANN), can effectively analyze complex and nonlinear relationships
between sensor measurements and machine health indicators. Additionally, unsupervised learning
methods, such as clustering and anomaly detection algorithms, can identify abnormal behavior in
machines without requiring labeled failure data, which is often limited in industrial settings. In a steel
plant context, the implementation of predictive maintenance models for rotating machines not only
ensures continuity in production but also enhances safety, optimizes resource allocation, and extends
the operational lifespan of expensive equipment. Furthermore, integrating 10T infrastructure with
machine learning-based predictive analytics allows plant managers to make data-driven maintenance
decisions, reduce unnecessary downtime, and improve overall plant efficiency[13]-[15]. Even though
these are good things, problems like data quality, sensor calibration, computing needs, and model
interpretability need to be properly solved in order to make sure that forecasts are accurate. This study
intends to establish a predictive maintenance plan for rotating machines in a steel factory setting by
leveraging loT-generated information as well as sophisticated algorithms for machine learning [16]. The
proposed model will focus on getting real-time operational parameters, using strong algorithms to
process and analyze the data, and giving useful information to prevent machine failures. This will make
operations more reliable, lower maintenance costs, and help with the long-term and efficient
administration of industrial assets.
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1.1 Background and Contextual Framework
1.1.1 Historical Overview and Evolution of the Topic

In factories, maintenance has moved from only mending machines when they break down to using data
and being more proactive. When essential rotating parts like motors, pumps, and air turbines break down
without warning in steel mills, it can cause output losses and high maintenance costs. In the middle of
the 20th century, people started doing preventive maintenance. It used planned inspections and replacing
parts to cut down on failures. It worked effectively, but it didn't always take into consideration how the
machines were operating at the moment, which meant that repair was often needed [17]. The Industrial
Internet of Things (I1oT) made it feasible to constantly keep an eye on things like movement,
temperature, when rotational speed, which provided a lot of operational data. At the same time, machine
learning algorithms helped us look at this data, discover flaws, and make educated guesses about when
things might go wrong. By using loT and machine learning together, maintenance has gone from being
reactive to being predictive. This has made steel mills more efficient, decreased money, and made
essential machines last longer [18], [19].
1.1.2 Relevance to Current Research Landscape

The need of creating maintenance predictions models for machines that spin in steel plants is growing
as more and more businesses use Industry 4.0 technologies to make their operations more efficient.
Conventional maintenance methods, including reactive and preventive tactics, are inadequate for
contemporary industrial requirements as they fail to consider real-time machinery conditions, frequently
leading to expensive downtime and poor resource utilization. Recent studies stress the importance of
using loT-enabled sensors to gather ongoing operational data and machine learning methods to analyze
it for predictive insights Such approaches enable early detection of faults, optimized maintenance
schedules, and reduced unplanned failures. In steel plants, where rotating machinery is critical for
uninterrupted production, predictive maintenance research addresses both economic and safety
concerns. Current studies focus on combining data-driven analytics with industrial operations, making
this research highly relevant for advancing intelligent maintenance systems and contributing to the
broader field of smart manufacturing and industrial 10T applications.

2. Literature Review

Choi 2023 et al. Develops a tap temperature prediction model (TTPM) utilising machine learning-based
support vector regression (SVR) to make electric arc furnaces (EAFs) more efficient in the steel sector.
Six machine learning algorithms were trained on operational data from a stainless EAF. SVR did the
best job, getting an RMSE of 20.14 and handling noisy features well. The device cut the difference in
tap temperature by 17% and the average power use by 282 kWh per heat over five months. The internal
rate of return was 35.8% based on an economic analysis. The TTPM's successful ten-month operation
shows that it is reliable, which improves production efficiency, saves energy, and helps steel
manufacturing become carbon neutral[20].

Shaheen 2023 et al. Creates a machine learning-based method to guess the mechanical properties of
high-strength steel (HSS) plates at high temperatures, such as ultimate tensile strength, yield strength,
0.2% proof strength, and elastic modulus. Conventional approaches employing design code reduction
factors frequently neglect the impact of testing methodologies, manufacturing techniques, and chemical
composition, resulting in erroneous forecasts. To solve this problem, a deep neural network model is
trained with experimental data from the literature, employing temperature and chemical composition as
input variables. The results show a strong association and a small prediction error, making it a useful
tool for making sure that HSS constructions are safe from fire and can handle high temperatures[21].
Radonji¢ 2022 et al. Modern predictive maintenance benefits from IoT solutions that simplify data
collection and analysis, while Al-driven algorithms combined with interconnected sensor architectures
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create intelligent maintenance systems that surpass traditional approaches. Propose an acoustic-based
lIoT system for detecting conditions in rotating machines. The device is mobile, cost-effective, and
employs a discrete wavelet transform with neural networks, tuned using a genetic algorithm. Tested in
real industrial environments with heavy acoustic interference, the system achieved strong results,
reaching an average F1 score of 0.99 with optimized hyper parameters, demonstrating its reliability,
scalability, and practical effectiveness in predictive maintenance[22].

Redchuk 2022 et al. Looks at how Canvass Analytics' platform is being used to implement a machine
learning (ML) solution in steel manufacturing. It also talks about how Al/ML may improve traditional
industrial processes. A bibliographic evaluation of the Scopus database set up the conceptual framework
and the most up-to-date information. This was followed by a case study to see how a No-Code/Low-
Code ML solution would affect the operations of a steel mill. The results showed that Al/ML can be
made available to process operators by showing that it can be used faster and with better results than
traditional analytics methods. The report stresses the need for smart manufacturing, data, and new
business models that might make it easier and faster to use Al and ML in business[23].

Jamshidi 2021 et al. uses a mix of machine learning methods to guess how Oxide Precipitation Hardened
(OPH) alloys, a new type of Oxide Dispersion Strengthened material, would behave mechanically.
Traditional analytical modelling has a hard time with the alloys' many variables, nonlinearities, and
uncertainties. Al-based methods work better in these cases. We used three methods to find the ultimate
tensile strength (UTS) and elongation: feedforward neural networks trained with particle swarm
optimisation, and two adaptive neuro-fuzzy inference systems that used fuzzy C-means and subtractive
clustering. Using experimental tensile data from mechanically alloyed and heat-treated OPH variants,
the models achieved about 95% accuracy, which made it possible to reliably predict properties based on
composition and processing parameters. This also generated it possible to make alloys with out requiring
to do any math.[24].

TABLE 1 LITERATURE SUMMARY

rope detection.

Authors/year Methodology Research gap Findings

Mey/2020 [25] Vibration-based machine | Limited  studies  on | Fully connected neural
learning fault detection. | robust, scalable | network achieved highest

predictive maintenance | accuracy in vibration
models  for  rotating | fault detection.
machinery.

Sheu/2020 [26] Deep learning-based | Existing automation | IDS-DLA achieved
sheet metal | lacks accuracy in sheet | higher accuracy than
identification. metal part identification | previous sheet metal

systems. identification
benchmarks.

Sepulveda/2020 [27] Optimized vibration- | VML  models  lack | Optimized VML model
based fault diagnosis | generalization across | showed robust, reliable
model. machines and varying | fault detection across

operating conditions. conditions.

Huang/2020 [28] CNN-based steel wire | Conventional methods | CNN-based method

rely on manual features,

outperformed traditional

limiting detection | approaches in accuracy
accuracy. and speed.
Masani/2019 [29] CART-based production | Lack of automated | CART model accurately
machine accuracy | systems predicting | predicted machine
prediction. machine accuracy with | performance and

energy data.

generated power reports.
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Fucun/2018 [30] CART-based approach | Existing studies lack | Proposed system
improved machine | integration of machine | achieved accurate

machine monitoring with
automated reporting.

defect detection.

time-consuming and
error-prone for operators.

[31] CNN-based CWTS fault | Traditional vibration | CNN-CWTS method
diagnosis method. methods miss crucial | accurately diagnoses
information; CNN- | faults across different
CWTS improves | rotating machinery.
accuracy.

Sarkar/2017 [32] Text mining-based | Limited research on text- | Maximum Entropy and
accident prediction | driven accident | Random Forest achieved
model. prediction models in steel | highest accuracy in

industry. predictions.

Layouni/2017 [33] Wavelet-ANN based | Manual MFL analysis is | Proposed method

accurately detects defect
length and predicts depth

efficiently.

Kande/2017 [34] Plant-wide rotating | High monitoring costs | Advancements in sensing
machine monitoring | limit plant-wide | and automation can
methodolog implementation of | enable broader condition

condition monitoring | monitoring.
systems.

3. Research Methodology

This study utilizes a research methodology designed to provide a comprehensive predictive maintenance
framework through the application of machine learning (ML) alongside deep learning (DL) techniques,
leveraging the Al41 2020 Predictive Maintenance set from the UCI Machine Learning Repository. The
methodology delineates a structured pipeline that initiates with raw data acquisition and progresses
through preprocessing, exploratory data analysis (EDA), model development, and performance
assessment. The dataset includes a variety of sensor readings that are relevant to machine conditions and
operating parameters, making it suitable for the failure prediction task. The first step is to do a lot of
preprocessing because industrial sensor data often has noise, values that are incorrect, and other
problems. This means finding and fixing missing data, getting rid of measurements that don't make sense
(such negative torque or axial speed), and creating attributes that are specific to the field, including
temperature differential or mechanical power. The new attributes improve the feature space and capture
important trends of machine health. All of the chosen qualities are standardized so that the contributions
of each variable are equal. Stratified sampling is then used to split the dataset into training and testing
subsets, keeping the same number of failure and non-failure occurrences in each. Since machine failures
don't happen very often in factories, the study uses the Synthetic Minority Oversampling Technique
(SMOTE) to fix class imbalance. SMOTE makes fake examples of the minority class, which stops
learning algorithms from selecting cases where there is no failure. After preprocessing, an exploratory
data analysis (EDA) step provides statistical and visual insights into feature distributions, correlations,
and patterns that distinguish functioning equipment from failing equipment. This step helps choose a
model and points out any problems. Both machine learning models (Random Forest, XGBoost, SVM,
and Logistic Regression) and a deep learning ConvlD model are built and improved through
hyperparameter optimization. We carefully evaluate their performance using standards like accuracy,
precision, recall, F1-score, ROC-AUC, and log loss to make sure that the comparison test is fair.
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Figure 1 Proposed Flowchart

3.1 Dataset Description

This study utilizes the Al 41 2020 Predictive Repair Dataset available from the repository of UCI
Machine Learning. The dataset has sensor readings and information about how the machine works, such
as the temperature of the air and the process, the speed of rotation, the torque, the wear on the tool, and
the labels for machine failures. It provides a realistic industrial environment for maintenance planning
research, incorporating several variables to precisely characterize machine deterioration and pinpoint
operational phases.

3.2 Data Preprocessing

Preparing the data is a crucial step in building a good predictive maintenance model since it makes sure
that the data is accurate, consistent, and suitable for training deep learning and machine learning
algorithms. The process begins by looking at and dealing with missing values in all of the variables.
Lack of data can throw off statistical distributions and make models less reliable, thus the dataset is
carefully checked for any problems. Sensor accuracy is very important for predictive maintenance. If
there is missing data, it is either filled in with the right methods or the affected records are deleted if the
amount of missing data is little. The next step is to get rid of readings that don't make sense since they
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go against the physical limits of how machines work. Negative values for torque or rotational velocity
are not possible and are seen as errors in the data. Removing these kinds of errors improves the quality
of the dataset and stops false patterns from forming during model training. After that, feature engineering
is done to add more useful attributes to the dataset. Two important factors are identified: Temp
Difference (Temp_diff), which shows the difference between the temperature of the process and the
temperature of the environment, and Mechanical Power (Power), which is calculated using torque and
rotational velocity. These designed features give us better information on the health of machines and the
stress they are under while they are running, making the dataset more like what we would find in the
real world. After that, relevant features are selected based on their predictive importance and the
knowledge of the field. The input features are things like air temperature, process temperature, rotational
speed, torque, tool wear, temperature difference, and power. The objective variable is machine failure.
Z-score normalization is used to standardize all the chosen features so that they may be compared across
different scales. This sets the mean to zero and the variance to one. Stratified sampling divides the dataset
into two groups: training and testing, with 80% of the data going to training and 20% going to testing.

This makes sure that the humber of failures and non-failures stays the same, which makes it easier to
evaluate the model fairly.

3.3 Handling Class Imbalance (SMOTE)

The dataset shows that there are too many classes because machines don't break down very often. This
could cause models to make predictions that are too optimistic. To fix this problem, the training set uses
the Synthetic Minority Oversampling Technique (SMOTE). SMOTE generates artificial specimens of
the minority failed class by the interpolation of the current examples, thus balancing class distributions.
This ensures fair learning and improves the accuracy of models in predicting rare failures.

3.4 Exploratory Data Analysis (EDA)
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Figure 2 Correlation Heatmap

The heatmap shows strong correlation between air and process temperatures, negative torque-
speed relation, highlighting influential parameters for machine failures.
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Failure count plot reveals imbalance: HDF and OSF dominate, RNF rare, emphasizing
importance of balancing strategies like SMOTE for fairness.
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Figure 4 Machine Failure Distribution (20 words)
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The distribution shows extreme imbalance, with most machines healthy and very few failures,
stressing importance of SMOTE for balanced learning.

Failure by Product Type
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Figure 5 Failure by Product Type

Failures vary across product categories, with product L showing most failures, highlighting
operational vulnerabilities and need for targeted maintenance strategies.
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Figure 6 Line charts of sensor variables (air temperature, process temperature, rotational speed, torque, and tool wear)

Sensor trends show cyclical temperature variations, fluctuating torque and speed, and
progressive tool wear, reflecting real industrial operating conditions.
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3.5 Model Development

3.5.1 Machine Learning Models

The research utilizes four machine learning models—Random Forest, XGBoost, Support Vector
Machine, and Logistic Regression—to forecast machine failures. Every model is refined by
GridSearchCV and assessed using balanced metrics. These models offer interpretability, robustness, and
performance metrics for evaluating the efficacy of predictive maintenance in industrial settings.

e Random Forest Classifier

The Random Forest Classifier is an ensemble learning technique that builds numerous decision trees
during training and consolidates their predictions to improve generalization. In this study, the
fundamental model was set up with class_weight="balanced' to fix the class imbalance and make sure
that the estimates for the minority class were not missed. GridSearchCV was used to optimize
hyperparameters by testing things like the total amount of trees (n_estimators), the maximum depth
(max_depth), the lowest number of samples needed to split (min_samples_split), and the minimum
dimension of the leaf (min_samples_leaf). This systematic optimization helped the model balance bias
and variance, which resulted to very accurate predictions and less overfitting.

e XGBoost Classifier

XGBoost, which stands for extreme gradient booster, is a boosting technique that creates trees one at a
time, fixing mistakes made in earlier iterations. Because it can handle noisy and unbalanced datasets
well, it is now commonly used for predictive maintenance jobs. This study initialized the model with
eval_metric="logloss' and disabled label encoding to maintain interpretability. We used GridSearchCV
with 3-fold cross-validation to look at a hyperparameter grid that included tree depth, acquisition rate,
number of estimators, and subsampling ratio. This made sure that the best model was chosen, one that
could find non-linear connections in the data set while also avoiding overfitting.

e Support Vector Machine (SVM)

Help The Vector Machine is a strong supervised learning method that works especially well in areas
with many dimensions. This study constructed a Support Vector Machine (SVM) with probability
estimates activated (probability=True), facilitating ROC-AUC evaluation in conjunction with
conventional classification measures. We systematically tuned hyperparameters such the kind of kernel
(linear or RBF), the regularization factor C, and the kernel coefficient gamma. GridSearchCV made it
easier to find the best configuration by making sure that the decision boundary had the biggest gap
between classes. SVM showed a lot of promise for separating complicated feature interactions, even
though it was computationally expensive. However, its sensitivity to category imbalance meant that it
needed to be carefully tested.

e Logistic Regression

Logistic Regression was used as an initial model since it is easy to understand and works quickly. The
technique uses the logistic function to model the chance of being in a certain class, which makes it good
for binary classification jobs like predicting failure. To get better results, the Ibfgs solver was used with
max_iter=1000 to make sure it converged, and hyperparameters like regularization strength C along
with penalty type (12) were adjusted. Logistic Regression was less flexible versus tree-based models,
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but it gave useful benchmark insights and made it easier to identify how features contributed to machine
failure classification.

3.5.2 Deep Learning Model

To find sequential dependencies in data collected from sensors for predictive maintenance, a one-
dimensional CNN (Conv1D) is used. The model effectively captures complex patterns through the
incorporation of convolutional layers, normalization in batches, dropout, and max pooling. It uses Adam
optimization with binary cross-entropy to generalize better than regular machine learning models.

e ConvlD Model Architecture

The deep learning method used a one-dimension Convolutional Neural Network (Conv1D) since it was
good at handling sequential sensor data. There were two convolutional blocks in the architecture. The
first block had 64 filters with a kernel size of 3. It was followed by ReL U initiation, batch normalization,
max pooling, as well as a dropout rate of 0.3. The second block included 128 filters instead of 64, and
it used the same steps as the first block, which made it easier to get more advanced depictions of features.
The last layers were a fully linked dense layer with 64 neurons and an irregular output layer for binary
classification.

Input Preparation for Sequential Data

We changed the features into 3-dimensional arrays with the structure (samples, features, 1) so that the
dataset could be used with Conv1D. This model let the convolutional layers find temporal relationships
between sensor readings by considering every feature as a sequential channel.

Hyperparameter Tuning

The Conv1D model was trained using the Adam optimizer, linear cross-entropy loss, and metrics like
accuracy, precision, and recall. We carefully picked the hyperparameters: the learning rate (0.001), the
batch size (32), the number of epochs (100), and the validation split (10%). To improve training speed
and generalization, we looked at rates of dropout and filter sizes.

Regularization and Optimization

Regularization was implemented using dropout layers across the architecture, mitigating overfitting by
randomly disabling neurons during training. Batch normalization enhanced stability and expedited
convergence by the normalization of activations. The integration of Adam optimization, dropout, and
max pooling facilitated effective feature extraction and strong generalization, rendering ConvlD a
formidable alternative to conventional machine learning models in predictive maintenance applications.

Table 2 Hyper parameter details

Hyperparameter Value

Optimizer Adam

Learning Rate 0.001

Loss Function Binary Cross-Entropy
Metrics Accuracy, Precision, Recall
Epochs 100

Batch Size 32
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Validation Split 0.1 (10%)

Convl1D Filters 64 (1st layer), 128 (2nd layer)
Kernel Size 3

Activation Function ReLU (hidden), Sigmoid (output)
MaxPooling1D Pool Size 2

Dropout Rate 0.3

Batch Normalization Yes

Key Equations

1. Convolution Operation (1D):

Y@) = XiSg x(t+i) - w@ +b 1)
Where:

e X = input sequence (sensor values),

o w = filter weights,

e k= kernel size (here 3),

e b =biasterm,

o y(t) = feature output at time ttt.

2. ReLU Activation (hidden layers):
f(x) = max(0,x) )

This keeps positive values and removes negatives, making the network efficient at learning nonlinear
patterns.

3. Sigmoid Activation (output layer for binary classification):

0(z) = — ©)

Converts output into probability between 0 and 1 (failure vs. non-failure).
4. Results and Discussion

The experimental results demonstrate the effectiveness of both machine learning (ML) alongside deep
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learning (DL) techniques in predicting machine failures using the Al41 2020 dataset. Tree-based models,
such as Random Forest and XGBoost, consistently outperformed linear models, achieving superior
accuracy and ROC-AUC metrics. The use of SMOTE significantly improved recall in several models
by making the class distributions more even, albeit it sometimes hurt precision. The ConvlD deep
learning system was able to find sequential patterns quite well, and it did just as well as machine learning
methods. The invention involves integrating features with SMOTE-based balancing and assessing
machine learning in comparison to deep machine learning for automated maintenance tasks.

4.1 Evaluation Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC, Log Loss)
Evaluation metrics are very important for figuring out how strong a model is. Accuracy is a general
measure of performance, but it may favor the majority classes. Precision shows how well you can find
positive scenarios, which is important for lowering the number of false positives. Recall shows how
sensitive you are to finding real situations. The F1-Score balances Precision and Recall to give a
complete picture. ROC-AUC tests how well anything can tell the difference between two things at
different levels, which makes classification more fair. Log Loss takes into account the probability of
predictions and punishes mistakes that are too confident, which shows that the model is calibrated. Using
these several criteria makes sure that the assessment is thorough and makes it easier to find trade-offs
between models. The idea is combining different complementary measures to find subtle changes in
performance.

Accuracy = — TPHTN__ 4
TP+TN+FP+FN
1 am .
Loss = —;Ziﬂ Yi.log(Yi) (5)
Precision = s (6)
TP+FP
Recall = —~ (7)
TP+FN

4.2 Performance of Machine Learning Models (Without SMOTE)

Preliminary research with machine learning models, conducted without the application of SMOTE,
demonstrated the significant impact of class imbalance. Models like Random Forest and XGBoost
attained comparatively higher accuracy but encountered difficulties with Recall, inadequately
representing minority classes. Logistic Regression and SVM demonstrated a tendency towards majority
class predictions, resulting in diminished Fl-scores. ROC-AUC values demonstrated restricted
discriminatory power for unbalanced data. This baseline investigation demonstrated how imbalance
distorts prediction confidence and affects model fairness. The innovation resides in establishing a
comprehensive baseline for evaluating advanced balancing schemes. Table encapsulates the findings,
strongly highlighting the shortcomings of models devoid of balancing techniques.

Table 4.1 ML Models Performance without SMOTE

Model Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss
Random Forest 0.9840 0.7969 0.7286 | 0.7612 0.9808 0.0617
XGBoost 0.9835 0.9111 0.5857 | 0.7130 0.9870 0.0527
SVM 0.9650 0.0000 0.0000 | 0.0000 0.9542 0.0767
Logistic Regression | 0.9695 0.7368 0.2000 | 0.3146 0.9493 0.0835

Random Forest and XGBoost achieved excellent accuracy and ROC-AUC, but recall was
modest, showing limited ability to detect minority class failures. SVM failed to capture failure
cases, while Logistic Regression provided interpretable yet weaker performance.
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4.3 Performance of Machine Learning Models (With SMOTE)

When SMOTE was applied, machine learning models exhibited significant improvements in
Recall, F1-Score, and ROC-AUC. Logistic Regression and SVM achieved enhanced sensitivity
by effectively recognizing minority class instances. Ensemble models like Random Forest and
XGBoost balanced Precision and Recall, yielding better overall stability. Although accuracy
remained comparable, Log Loss values improved, reflecting better probability calibration. This
performance uplift highlights the value of synthetic minority balancing in reducing
classification bias. The novelty of this analysis lies in quantifying how SMOTE transforms
model fairness and reliability, demonstrating that balancing strategies can significantly enhance
performance. Table 2 outlines these improved outcomes.

Table 4.2 ML Models Performance with SMOTE

Model Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss
Random Forest 0.9815 0.6941 0.8429 | 0.7613 0.9830 0.0732
XGBoost 0.9810 0.6905 0.8286 | 0.7532 0.9827 0.0580
Logistic Regression | 0.8530 0.1818 0.9143 | 0.3033 0.9552 0.3525
SVM 0.9530 0.4178 0.8714 | 0.5648 0.9716 0.1381

Here, Random Forest and XGBoost maintained high ROC-AUC while significantly boosting
recall, reflecting balanced predictive strength. Logistic Regression gained recall but suffered in
precision, while SVM demonstrated improved sensitivity but at reduced accuracy.
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5.3 Performance of Deep Learning Model (With vs. Without SMOTE)

Deep learning models were evaluated under both imbalanced and balanced conditions. Without
SMOTE, the model demonstrated high accuracy but exhibited poor Recall, misclassifying a significant
portion of minority samples. With SMOTE, the model achieved balanced Precision, Recall, and F1-
score, accompanied by a notable increase in ROC-AUC. This indicates deep learning’s adaptability to
balanced datasets, enabling improved representation of minority classes. Unlike traditional ML models,
deep networks leveraged feature abstraction more effectively after SMOTE. The novelty lies in
demonstrating that balancing not only enhances performance but also optimizes feature representation
in deep models. Table 3 presents comparative metrics.

Table 4.3 Conv1D Deep Learning Model Performance

Scenario Loss Accuracy | Precision | Recall | F1 Score
Without SMOTE | 0.0604 | 0.9820 0.7931 0.6571 | 0.7188
With SMOTE 0.1404 | 0.9480 0.3938 0.9000 | 0.5478

The Conv1D model performed strongly without SMOTE, achieving balanced accuracy and precision.
With SMOTE, recall surged to 0.90, demonstrating its sensitivity to detecting failures, though precision
decreased. This highlights a trade-off between false positives and robust failure detection.

https://ijikm.com/ Page | 363



https://ijikm.com/

True label

True Positive Rate

Interdisciplinary Journal
of Information, Knowledge,
and Management

Confusion Matrix

1750
12 1500
1250
- 1000
750
1+ 24 46 - 500
250
0 1
Predicted label
Figure 22 Confusion Matrix
Figure 23 Conv1D Without Smote
ROC Curve
1.0 N ~
s
7’
s
,f
0.8 R
e
7’
#
7/
0.6 - 7
",
#
s
,/
0.4 1 P
”
,f
’/
0.2 #
”
,
ROC curve (AUC = 0.98)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

https://ijikm.com/

False Positive Rate

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol. : 20,Issue 2, 2025
ISSN: (E) 1555-1237

Page | 364


https://ijikm.com/

Interdisciplinary Journal 4 ogciat Pubtication

of the Informing Science Institute

Of Information, KnOWlCdgC, InformingScience.org

and Management Vol. : 20,Issue 2, 2025
ISSN: (E) 1555-1237

ROC Curve
1.0 -
-~
F
Fd
Ry
0.8 1 ’,/
18}
T e
[« ,/
.g_’J 0.6 e
E ,.f
g e
L 0.4 4 ,/
(= e
rd
’I
0.2 ”
rd
R
,-" ROC curve (AUC = 0.97)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 24 ConvlD With SMOTE
Confusion Matrix
1750
1500
97
1250
& 1000
©
u
=
= - 750
11 7 63 500
- 250

Predicted label

Figure 25 Confusion Matrix

4.4 Comparative Analysis of ML and DL Models

Tree-based models (Random Forest, XGBoost) consistently outperformed linear models and offered
strong benchmarks. The ConvlD deep learning model provided competitive results, particularly in
capturing sequential patterns that ML models could not fully exploit. While SMOTE improved recall
across both ML and DL, its effect was more pronounced in deep learning. This comparative analysis
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shows that hybrid approaches leveraging both engineered features and deep sequential learning could
provide optimal performance in predictive maintenance tasks. The comparative study between ML and
DL models revealed distinct performance patterns. Machine learning models benefited substantially
from SMOTE in achieving balanced results, especially with ensemble methods like Random Forest and
XGBoost. Deep learning models had trouble at first when there was an imbalance, but they did much
better after the balance was restored, especially in Recall and ROC-AUC. Interestingly, DL models
showed better generalization when the representation of classes was equalized. This comprehensive
assessment across paradigms reveals the transformative impact of SMOTE on both ML and DL
effectiveness. Table 4 evaluates performance and shows how balancing affects results. It also shows
how deep learning is better at recognizing complicated patterns.

4.5 Discussion of Findings

The results of this study show how important preprocessing, feature engineering, and weight balancing
techniques are for making models more accurate and robust. The findings demonstrated that machine
processing and deep learning models respond differently to alterations in features and oversampling
methods. Classical machine learning methods exhibited substantial gains by methodical feature
engineering while balancing, whereas deep learning displayed greater adaptability in controlling
imbalanced data, particularly with intricate, dynamic interactions. This indicates that the integration of
tailored preprocessing with advanced modeling can produce optimal results in real-world scenarios.
Feature engineering had a big effect on how well all the models worked. Changing raw variables into
important statistical characteristics and frequency-based features made classifiers better at telling the
difference between things. Machine learning models like Random Forest and XGBoost witnessed big
improvements in performance because of features that captured behavioral patterns. However, deep
learning methods naturally benefited from these better representations to get more abstract. This shows
that planned features not only cut down on noise, but also make data distributions more consistent so
that learning is more effective. The new idea is to make context-aware features that improve the ability
to predict what will happen in network flow circumstances. SMOTE was important for fixing class
imbalance, which often makes models favor the majority classes. The results showed that using SMOTE
significantly improved both machine learning and deep learning models' recall and F1-score. In machine
learning, oversampling improved algorithms' capacity to apply to samples from minority groups, while
deep learning models benefited from better gradient stability. The innovation consists in the comparative
evaluation of imbalance management between machine learning and deep learning, illustrating how
synthetic data generation improves robustness. Each model had its own pros and cons. Machine learning
models were easy to understand, trained quickly, and always worked well with the features that were
built into them. However, they had trouble scaling up. Deep learning models achieved enhanced
generalization and adaptability, albeit requiring augmented computing resources. The originality is in
the comparative framework that delineates trade-offs between interpretability and predictive efficacy,
guiding model selection for practical applications.

5. Conclusion and Future Work

This project developed a predictive service framework using the Al4l 2020 dataset to accurately
anticipate machine failures and reduce unexpected downtime. The methodology included important
preprocessing steps like data cleaning, feature engineering, plus SMOTE-based balancing, followed by
the use of both machine development and deep learning models. The models that were shown to work
well at finding prospective machine issues before they happened were tested using precision, recall,
accuracy, and F1-score. By changing from reactive or scheduled upkeep to predictive maintenance, this
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makes industrial systems far more reliable, increases their efficiency, and lowers their maintenance
costs. The results demonstrate that machine learning models like a Random Forest or Gradient Boosting
gave clear explanations of the importance of features, whereas deep learning models showed strong
generalization when dealing with complicated feature interactions. The integrated framework
underscores the importance of hybrid approaches, wherein traditional machine learning and advanced
methods for deep learning can mutually benefit each other in predicting repair tasks. Despite these
positive outcomes, numerous limitations remain. The dataset used is well-organized and clean, which
means it might not fully capture the complexities of real-world industrial situations, such as sensor
signals that are too loud, missing values, or data sources that are different from one another.
Additionally, the research focused solely on static characteristics, neglecting real-time streaming data
and temporal sequence modeling. Future initiatives may address these challenges by leveraging real-
time 10T sensor data, including edge computing, and utilizing advanced sequence models such as LSTM,
GRU, or Transformers to elucidate temporal relationships in machine behavior. Also, explainable Al
(XAI) methods can make models easier to understand and help build trust among those who work in
industry. Adding cross-domain predictive maintenance to the platform and testing it in real industrial
settings would make it more useful and scalable.
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