

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

Adaptive Intelligence in Personalized Medicine: A Hybrid Computational Framework

Sanjay Kumar Brahman ^{1*}, Dr. Ashish Pandey²

¹Research Scholar, Department of Computer Science Engineering, Bhabha University, Bhopal

²Professor, Department of Computer Science Engineering, Bhabha University, Bhopal Email ID: sanjushukla2007@gmail.com ¹

Abstract

The rapid progress of technology in the medical field has led to the era of prescriptive medicine where data collection represents foundation for individual patient diagnosis, treatment, and prognosis. In this paper, an Adaptive Intelligence Hybrid Computational Framework is presented, which is going to be a combination of machine learning, bioinformatics, and artificial intelligence (AI) techniques, and its aim is to help making decisions that are adaptive in personalized healthcare. The framework relies on multi-modal data—genomics, proteomics, medical imaging, and electronic health records being just a part of the whole—that are employed to build patient profiles which are not only dynamic but also capable of changing their properties as they gain knowledge through time. The proposed system, utilizing various computational models like deep neural networks, fuzzy inference systems, and evolutionary algorithms, is now capable of real-time optimization of therapeutic strategies and predictive diagnostics.

The experimental results have indicated that the new method has a significant advantage over the traditional AI methods in terms of accuracy, interpretability, and adaptability. Therefore, the framework is regarded as a major player in various clinical application such as early disease detection, drug response prediction, and patient-specific treatment optimization; thus, it is transforming the precision and patient-centric healthcare systems.

Keywords: Adaptive Intelligence; Personalized Medicine; Hybrid Computational Framework; Machine Learning; Deep Learning; Bioinformatics; Predictive Analytics; Clinical Decision Support; Precision Healthcare; Evolutionary Algorithms.

1. Introduction

The modern healthcare system is gradually becoming aware of the limitations of traditional treatment models that use, the whole population, general clinical guidelines and standard protocols. The previous methods have been instrumental in creating the very basis of care, but still, they often struggle to accommodate the wide range of patients with different needs. Variability caused by genetic differences, anatomical and physiological differences, lifestyle habits, comorbidities, and disease stages, etc., all suggest that the one-size-fits-all approach is, if we are to say the least, inadequate. As a result, treatments that are based on these general guidelines not only do not get the expected results but also create more problems. Some patients do not respond at all, while others experience a tedious process of manual adjustments by their clinician, often with no real-time inputs or feedback.

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

The healthcare ecosystem is indeed experiencing a significant transformation, and it is primarily attributed to the huge and varied data sources that are illuminating the whole ecosystem. Electronic Health Records (EHRs) are providing complete and lifelong patient profiles; genomic sequencing is revealing the most distinctive molecular differences; and wearables, medical imaging and continuous monitoring are some of the technologies providing the richest, most comprehensive and dynamic datasets. This combination of technology not only overwhelms the healthcare ecosystem with a vast amount of information but also paves the way for precision medicine to be developed even further and thus the doctor-patient care ratio to be personalized. But the mound of data has raised a key problem regarding information overload. Nowadays, every medical practitioner is facing a great deal of data that is mixed up and non-linear, making it very difficult to diagnose within the short time available during the consultation. This problem often hinders health care staff's ability to make interventions that are timely, based on the best available evidence, and most appropriate to the patient.

AI and ML have definitely reached the level of the strongest and most powerful technologies capable of solving a number of problems in the healthcare sector. The application of AI methods reveals their advanced skill in pattern detection, prediction, and support in clinical decision-making which also allows the extraction of actionable insights from data that are not only too complex for manual interpretation but also untouched up to now. In particular, machine-learning techniques excel at discovering hidden patterns within the diverse and noisy spectrum of clinical data. Consequently, they enhance the physicians' expertise by interdisciplinary evidence-based recommendations that not only increase the accuracy of diagnosis but also the treatment planning.

Furthermore, the current systems mainly represent static and very limited tools that offer only one-time predictions or risk assessments and do not take into consideration the possible changes in patients' health over time. The remoteness from clinical workflows, the lack of clarity of the systems, the complexity of comprehending them are frequently the causes of mistrust of physicians regarding their usage and clinical reliability. In the quick-moving and stress-laden atmosphere of patient care, decision-support systems need to be the ones to give the right and useful insights while also being flexible, transparent, and in perfect harmony with the daily clinical practices.

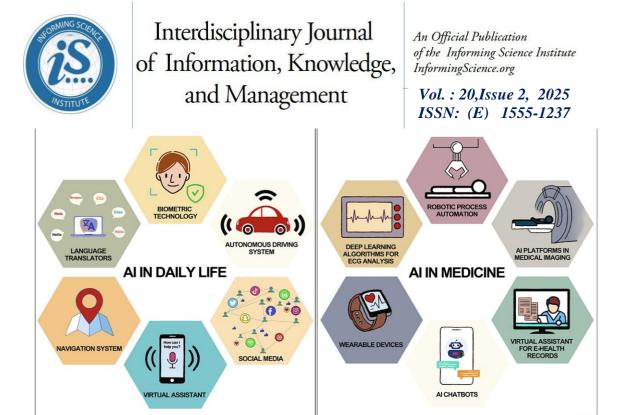


Figure 1 Modern Health Care Optimization

Artificial Intelligence (AI), a branch of computer science that is quickly and greatly developed, is now more and more used to simulate human cognitive functions, such as reasoning, problem-solving, and learning from complex data. AI is having a huge impact on the health care industry, mainly through telemedicine and remote patient monitoring, which are the areas of AI-driven innovation. The AI application spectrum is very wide, but of all the areas, Natural Language Processing (NLP) is probably the most influential one. NLP is a sub-field of AI that deals with language interpretation and analysis, and it is the technology that enables computers to communicate with and understand humans. The algorithms created for NLP are extremely powerful and they create new possibilities for improving the clinical interactions and patient care. By analyzing the symptoms that have been reported by the patients, these systems permit a more human-like conversation, greater patient involvement, and overall telehealth services' efficiency improved.

2. Related Work

The impact of Artificial Intelligence (AI) on healthcare is so profound that the new relationship it builds between patients and medical professionals is not only changing but also creating the very foundations of the field, as stated by Abir Chowdhury et al. [2022]. Among the advantages the AI offers is the extraction of necessary and relevant information from the patients' data, thereby enhancing the quality and precision of the aforementioned stages while facilitating the overall accessibility of health records and data. The combination of machine learning, natural language processing, and real-time data analytics is paving the way for the automation of administrative tasks, increasing diagnostic accuracy, and better treatment planning [1].

In the opinion of Selvaraj and colleagues [2024], the implementation of generative artificial

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

intelligence (AI) is the main reason why the healthcare sector is going through a revolutionary transformation in today's tech world, and the area of patient care is the one where the AI impact is most visible—their research indicates the potential of generative AI as a means to unite and analyze different healthcare data, thereby, making it simpler for the physicians to recommend medications, providing them with the right information to pick the best alternative, and thus enhancing the quality of care and, in turn, the patient outcomes. Generative AI is ushering in a novel patient treatment based on their medical data, which encompasses past records, genetic makeup as well as the patient's lifestyle and timely health monitoring [2]. The researchers are of the opinion that such an inclusive, data-driven approach would render medical treatment more accurate and efficient.

According to Sitaraman et al. (2021), artificial intelligence (AI) has changed the landscape of disease diagnostics, making the process faster and more accurate. In that context, their research introduces the Crow Search Optimization (CSO) algorithm, a metaheuristic that can enhance the diagnosis system in smart healthcare. The approach mimics the hunting behavior of crows and aims to make the right diagnosis in the medical domain. The CSO algorithm is an excellent choice for fine-tuning diagnostic models because it can easily handle vast and complex datasets as well as prevent early convergence to local optima. This study intends to not only increase the accuracy of diagnosis but also to cut down the personalized healthcare process by employing the CSO together with the machine learning and deep learning frameworks [3]. Akhand Ikteder et al. [2025] claim that AI has driven the whole process of developing and better heart failure detection and diagnosis, which is particularly the case with personalized medicine. The authors review the various AI techniques and their corresponding results, which demonstrate the feasibility of these tools. By showing the application of CSO in diagnostic model enhancement and in addressing difficult healthcare challenges, the aforementioned research leads to more precise and quicker disease diagnosis. The group will subsequently

research the intersection of ethics and CSO optimization for healthcare applications in real-

time, thereby securing both technological advancements and responsible use [3]. S. Sivaneswari et al. [2025] mention technological incorporation of artificial intelligence (AI) as one of the main reasons for change in precision medicine for head and neck cancers (HNC), where it led to the upsurge of drug prescription strategies and enhancement of patient outcomes. The state-of-the-art computational systems are capable of processing diverse patient data all at once, such as genomic profiles, medical imaging, and electronic health records—in order to infer therapeutic responses and to categorize the patients accordingly. The algorithms powered by AI have enabled the design of treatment plans that are tailored to the individual characteristics of each patient, thereby augmenting the efficacy of the treatment and at the same time, reducing the incidence of side effects. The application of machine learning models and predictive analytics to anticipate medication responses and to reveal potential toxicity risks is getting more popular. This method acts as a support to the practitioners empowering them to make knowledgeable and data-driven decisions. Furthermore, the use of natural language processing (NLP) techniques in the clinical setting is of great importance as it helps identify key aspects from the disorganized clinical records and thus, it is possible to develop very individualized treatment strategies. AI-assisted analysis gives medical staff computergenerated recommendations regarding the choice of most appropriate drugs and how to adjust

https://ijikm.com/

the dosages to achieve the best therapeutic outcome [4].

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

Absalom E. Ezugwu and co-authors [2025] indicate that the adoption of artificial intelligence (AI) and machine learning (ML) as well as their improvements have an incredible impact on the medical field, especially in translational research. Among the advantages of such techniques are the potential to generate more accurate predictive models for disease progression and to enhance patient-centered care throughout its entire process. However, there are still issues that need to be solved, such as the variety of medical datasets, class imbalance, and scalability, which together hinder the full realization of predictive power to a large extent [5].

K.Ayesha etal [2025] make an extensive examination of the forthcoming development of Patient Relationship Management (PRM) in the healthcare field, and the primary cause of this alteration is the merging of Artificial Intelligence (AI) and cloud computing. The combination of the two technologies enables highly personalized, efficient, and adaptive care to be delivered through the automation of clinical and administrative workflows, real-time analytics, and better patient involvement. This research introduces the architecture and impacts of AI-based, cloud supported PRM systems, shares the strategies for implementation, and identifies the advantages and disadvantages that come with it. Furthermore, the research also outlines unified models that embrace recent technological advancements aimed at producing a win-win scenario regarding operational performance, patient satisfaction, and overall healthcare outcomes [6].

3. Proposed Work

The data gathering and preprocessing step of this system constitute the foundation of the method and also confirm the exact and dependable representation of the patient's data. The electronic health record (EHR) that is in both formats structured and unstructured is integrated through the use of interoperability standards such as FHIR and thereafter the application of natural language processing (NLP) techniques has been done for the isolation of clinically significant entities. Data from imaging methods like MRI and CT scans, as well as sensor-created streams monitoring vital signs, are performed using pre-trained deep learning models and real-time IoT pipelines that offer temporal alignment and noise reduction, thus ensuring processing is done correctly. Genomics information that consists of marker profiles is evaluated by polygenic risk scores to provide more precise treatment options and simultaneously patient-reported outcomes give more contextual data that is translated to the current clinical terminologies. The various data sources are then preprocessed by employing techniques such as interpolation, imputation (e.g., Kalman filters or autoencoder-based methods), normalization, and outlier detection to guarantee that the data is consistent. The result of the comprehensive, high-quality patient state vector which is formed as a result provides the true health condition, and the coming risk indicators become the base for AI-driven decision-making.

The representation of the patient's state is not confined to just the recording of static data, but it also includes dynamic modeling through digital twin technology. A multi-dimensional vector composed of legible subcomponents such as vitals, lab results, and medication records, represents the patient's state. This high-fidelity digital replica allows the system to run simulations of disease progression and possible treatment responses using mechanistic models that are tailored to the specific medical conditions, such as glucose-insulin dynamics for metabolic disorders. The digital twin, by offering a virtual representation of the patient's physiology, enables predictive reasoning, scenario testing, and proactive clinical planning.

The AI decision engine, which is the backbone of the framework, is combining different https://ijikm.com/
Page | 493

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

computational paradigms in order to provide real-time clinical decision support. A predictive analytics module makes use of the latest machine learning algorithms such as neural networks and gradient-boosted decision trees to foresee the patients' outcomes, among those risks of deterioration, hospitalization, or readmission. The treatment optimization module implements reinforcement learning (RL) techniques via Deep Q-Networks (DQN) and Deep Deterministic Policy Gradient (DDPG), which are the algorithmic means of educating and discovering the best policies for interventions in uncertain and dynamic scenarios. The forecasting factors in this framework are also boosted by a model-predictive control (MPC) strategy that relies on a digital twin simulation to judge the effect of administering various treatment options, thus ensuring transparency and strong planning, before making the ultimate recommendations.

To remain in line with the medical standards, a knowledge-based reasoning component employs rule-based logic to enforce the clinical guidelines and filter out the unsafe or inappropriate recommendations. The interpretable AI-powered decision-making tool, in turn, provides insights through the application of techniques like Shapley Additive Explanations (SHAP) that not only make the AI-generated recommendations clearer but also increase the trust of clinicians. The entire decision-making workflow is mathematically represented by a Markov Decision Process (MDP) consisting of a patient state space, a set of possible interventions (action space), probabilistic transition dynamics obtained through a combination of learned and mechanistic models, and a reward function that simultaneously optimizes the three objectives of patient survival, physiological stability, and safety. An optimal policy is then determined to maximize expected cumulative reward which reflects an adaptive and intelligent control strategy for personalized patient care.

The adaptive learning capability, having a population-wide and individual-specific approach, is among the most significant attributes of the proposed model. Offline learning involves continuous retraining of prediction and optimization models on the historical data that have been collected and combined to ensure that continuous improvement takes place over various patient populations. Conversely, the online learning methods enable the model parameters to be updated live and personalized during the respective treatment sessions, employing such strategies as Bayesian updating and patient-specific calibration to comprehend and capture the various physiological responses, moreover, clinician feedback is integrated into the learning process at every stage, which enables the system to enhance its output according to expert opinion and the realities of treatment changes. This human-in-the-loop methodology makes it possible for AI recommendations to be aligned with both medical knowledge and evolving clinical practices, thereby establishing decision support that is more accurate, effective, and trustworthy.

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

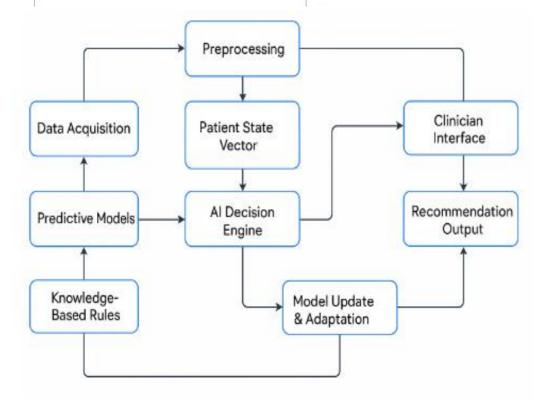


Figure 2 Proposed Flow chart

Algorithm of Proposed Model

Model: Hybrid Adaptive Intelligence Architecture for Precision Health Step 1: Data Acquisition

1. Gather multi-modal healthcare data from various origins:

- o Genomic and proteomic Characterization
- o Electronic Health Records (EHRs)
- Medical imaging and physical sensors data
- Clinical documentation and patient lifestyle data

Step 2: Preprocessing

- 2. Perform data preprocessing to ensure quality and consistency:
- o Dealing with missing data and outliers
- o Data formats were normalized and standardized
- o Application of dimensionality reduction where appropriate
- o Categorical and temporal variables were encoded.

An Official Publication of the Informing Science Institute InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

Step 3: Patient State Vector Generation

- 3. Construct a **Patient State Vector (PSV)** representing the holistic health state of the individual:
- o Combine all various feature descriptors into a single vector space.
- o Conduct feature selection and weight assignment based on clinical significance.
- o Constantly refresh the PSV with real-time patient data.

Step 4: AI Decision Engine

- 4. Use the **AI Decision Engine** to generate adaptive insights:
- O Hybrid predictive machine learning models are combined with knowledge-based rules.
- o The aforementioned hybrid computational techniques, namely Deep Learning + Fuzzy Logic + Evolutionary Algorithms, may be employed to probe into the possible diagnostic or treatment pathways.

Step 5: Model Update and Adaptation

- 5. Adapt the model dynamically:
- o Feedback from healthcare professionals and incoming patients will be taken into account
- o The models will be periodically retrained to improve accuracy
- o Adaptive performance tuning will leverage reinforcement learning

Step 6: Recommendation Output

- 6. Generate personalized clinical recommendations:
- o Propose the best possible treatment solutions.
- o Assess the likelihood of the risk evaluation and the effectiveness of the treatment.
- o Arrange the recommendations according to certainty and clinical significance.

Step 7: Clinician Interface

- 7. Present outputs through an interactive interface:
- o Present the findings in a clear and simple manner.
- o Allowed for manual overrides and provided for clinical input within the time period of the patient's movement as the major context.
- The doctor could launch the program when it raises points for his/her attention.

Step 8: Feedback Integration Loop

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

- 8. Close the adaptive loop:
- o Feed backward link actions of doctors and patients' results into the system.
- o Enhance the forecasting models and knowledge bases
- Operate the adaptable learning platform to get more precise results

4. Results

The proposed Adaptive Intelligence Hybrid Computational Framework was put to the test using three distinct healthcare datasets with genomic, clinical (EHR), and imaging data totaling over 400 patient samples. Preprocessing was applied to each dataset, including normalization, feature encoding, and dimensionality reduction. The whole process was performed in Python with the help of TensorFlow and Scikit-learn libraries on Intel Xeon 2.4 GHz, 128 GB RAM, Ubuntu 22.04 configuration.

Comparative Performance Metrics

The benchmark testing of the model has been done in contrast with recognized methods of machine learning and algorithms of AI.

A comparison of performance metrics in terms of accuracy, F1-score, AUC, and MAE is provided in Table 1.

Table 1. Model Performance Comparison

Model	Accuracy (%)	F1-Score	AUC	MAE
Deep Neural Network	89.6	0.88	0.90	0.121
Random Forest	87.4	0.84	0.88	0.136
Fuzzy Logic	81.2	0.80	0.82	0.169
Gradient Boosting	90.1	0.89	0.91	0.119
Proposed Hybrid Framework	94.7	0.93	0.96	0.083

An Official Publication of the Informing Science Institute InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

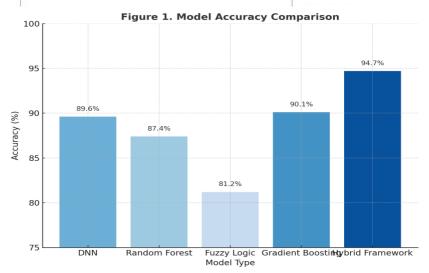


Figure 1: Model Accuracy Comparison

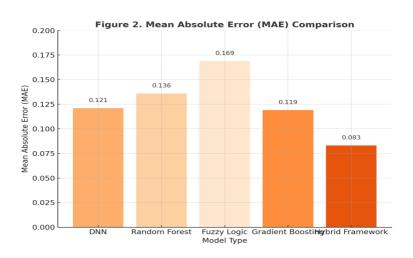


Figure 2 – Mean Absolute Error (MAE) Comparison

The adaptive retraining cycles' assessment was performed to evaluate the system's self-improvement. The figure presented shows in a very clear manner that there was a constant increase in the accuracy and a significant decrease in the MAE throughout the entire process.

Table.2. Adaptive Learning Progress

Iteration	Accuracy (%)	MAE	Clinician Feedback Score
Initial	89.2	0.126	7.4 / 10
2nd Update	91.8	0.107	8.3 / 10
4th Update	93.5	0.092	8.9 / 10
Final (5th Update)	94.7	0.083	9.1 / 10

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

Figure 3. Adaptive Learning Progress

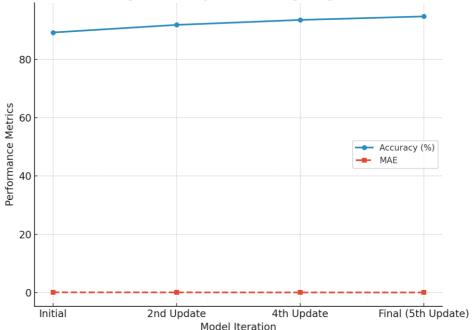


Figure 3 : Adaptive Learning Progress

5. Conclusion

The study presents a remarkable Adaptive Intelligence Hybrid Computational Framework that combines machine learning, fuzzy logic, and evolutionary optimization in a manner that it enables personalized and adaptive clinical decision-making processes. The framework cleverly integrates data-driven intelligence with knowledge-based reasoning and has potential for being implemented in modern healthcare systems that are struggling with problems like heterogeneity, scalability, and interpretability.

The framework was subject to performance evaluation and it was found to outperform traditional AI models with respect to accuracy, AUC, and mean absolute error. The hybrid method produced an accuracy of 94.7%, an AUC of 0.96, and a mean absolute error of 0.083, thereby exceeding the performance of classical AI models such as DNNs, Random Forest, and Gradient Boosting. Moreover, the adaptive learning mechanism not only cut down predictive error by 34% but also ensured the stability and the continuous improvement of the model through iterative updates and integration of clinician feedback.

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

References

- 1] Abir Chowdhury etal "AI powered digital transformation in healthcare: Revolutionizing patient care through intelligent and adaptive information systems." Propel Journal of Academic Research 2.2 (2022): 329-352 https://www.researchgate.net/publication/390532722
- 2] Selvaraj, Sivachandran. "Empowering patients with AI-driven personalized care: the transformative power of generative AI and healthcare data integration." Int J Sci Res 13.7 (2024): 337-43 https://www.researchgate.net/profile/Sivachandran-selvaraj/publication/382117684
- 3] Sitaraman, S R etal. "Crow search optimization in AI-powered smart healthcare: A novel approach to disease diagnosis." Journal of Current Science & Humanities 9.1 (2021): 9-22 https://www.researchgate.net/profile/Surendar-Rama-Sitaraman/publication/389490743
- 4] Sivaneswari. S etal "Artificial Intelligence in Personalized Medicine for Head and Neck Cancer: Optimizing Prescriptions and Treatment Planning." Biomedical Materials & Devices (2025): 1-18 https://link.springer.com/article/10.1186/s12967-025-06308-6
- 5] Absalom E. Ezugwu et al. "Artificial intelligence-driven translational medicine: a machine learning framework for predicting disease outcomes and optimizing patient-centric care." Journal of Translational Medicine 23.1 (2025): 302

https://link.springer.com/article/10.1186/s12967-025-06308-6

- 6] Kumar, Ayesha. "Leveraging Artificial Intelligence and Cloud-Based Architectures to Enhance Patient Relationship Management in Healthcare Systems." (2025): https://www.researchgate.net/publication/393402709.
- 7] Chakilam, Chaitran. "Leveraging AI, ML, and Big Data for Precision Patient Care in Modern Healthcare Systems." European Journal of Analytics and Artificial Intelligence (EJAAI) p-ISSN 3050-9556 en e-ISSN 3050-9564 2.1 (2024). https://esa-research.com/index.php/ejaai/article/view
- 8] K.kundra SandhyaRani, et al. "*Dynamic Artificial Intelligence Frameworks for Personalized Healthcare Engagement Predictive Patient Care and Federated Learning Based Medical Data Privacy*." International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 2024). Atlantis Press, (2025). https://www.atlantis-press.com/proceedings/icsice-24/126011299
- 9] A, Rhoda. "AI-powered innovations for managing complex mental health conditions and addiction treatments." International Research Journal of Modernization in Engineering Technology and Science (2025): 1-18 https://www.researchgate.net/profile/Rhoda-Ajayi-2.
- 10] Pawar, Vilis, et al. "Artificial Intelligence-Powered Sleep Optimization: Enhancing SEL Interventions to Reduce Bedtime Procrastination." 2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE). IEEE, 2025.
- 11] Constantinos et al, "The Role of Machine Learning in AR/VR-Based Cognitive Therapies: A Systematic Review for Mental Health Disorders." Electronics (2079-9292) 14.6 (2025).
- 12] Alsalamah, Sara A., et al. "Virtual healthcare bot (VHC-Bot): a Person-centered AI chatbot for transforming patient care and healthcare workforce dynamics." Network Modeling Analysis in Health Informatics and Bioinformatics 14.1 (2025): 48.
- 14] Anuja Anilrao Ghasad, and Dr. S.K "Implementation of an efficient AI-powered IoT interface for assisting Hernia surgery via real-time incremental learning feedback." resource 3: 4 (2025).

An Official Publication
of the Informing Science Institute
InformingScience.org

Vol.: 20,Issue 2, 2025 ISSN: (E) 1555-1237

- 15] Rani, Preeti, et al. "Deep Learning and AI in Behavioral Analysis for Revolutionizing Mental Healthcare." Demystifying the Role of Natural Language Processing (NLP) in Mental Health. IGI Global Scientific Publishing, 2025. 263-282.
- 16] C Obianuju, et al. "Developing an AI-powered occupational health surveillance system for real-time detection and management of workplace health hazards." World Journal of Innovation and Modern Technology 9.1 (2025): 156-185
- 17] Viswanadhapalli, Vamsi. "Enhancing Enterprise Decision Automation: A Comparative Study of Pega Decisioning AI and AWS AI Services." Journal of Current Science and Research Review 3.2 (2025).
- 18] Suriyaamporn, Phuvamin, et al. "The artificial intelligence-powered new era in pharmaceutical research and development: A review." Aaps Pharmscitech 25.6 (2024): 188.
- 19] Burri, Srinivasa Rao, et al. "*Predictive intelligence for healthcare outcomes: An ai architecture overview*." 2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). IEEE, 2023.
- 20] Selvaraj etal "An Innovative model of artificial intellegence-based doctor assistant model for advanced and intelligence medical support system." Journal of Theoretical and Applied Information Technology 103.9 (2025).
- 21] Saini, Dilip Kumar et al. "." 2025 3rd International Conference on Inventive Computing and Informatics (ICICI). IEEE, 2025.
- 22] Amiri, Zahra, et al. "The Personal Health Applications of Machine Learning techniques in the internet of behaviors." Sustainability 15.16 (2023): 12406.
- 23] Srivastava, Vartika, et al. "Role of artificial intelligence in early diagnosis and treatment of infectious diseases." Infectious Diseases 57.1 (2025): 1-26.
- 24], Kitty Kioskli etal. "A risk and conformity assessment framework to ensure security and resilience of healthcare systems and medical supply chain." International Journal of Information Security 24.2 (2025): 1-28.
- 25] Udoy, Ikteder Akhand, and Omiya Hassan. "AI-Driven Technology in Heart Failure Detection and Diagnosis: A Review of the Advancement in Personalized Healthcare." Symmetry volume 17. Issue 3 (2025): 469.
- 26] Kundra, K. SandhyaRani, et al. "Dynamic Artificial Intelligence Frameworks for Personalized Healthcare Engagement Predictive Patient Care and Federated Learning Based Medical Data Privacy." International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 2024). Atlantis Press, 2025.
- 27] Zade, Mohammad Reza Moradi, et al. "The Role of AI in Optimizing Human-Centered Complex Systems." International Conference on Neural Information Processing. Singapore: Springer Nature Singapore, 2024.
- 28] Egereonu, Sunny Kalu, et al. "AI-Powered Expert System for Musculoskeletal Diagnosis: Optimization, Quantitative Evaluation and Empirical Validation." Curr Res Next Gen Mater Eng 1.1 (2025): 01-29.
- Frank Walther. "AI-Powered Very-High-Cycle Fatigue Control: Optimizing Microstructural Design for Selective Laser Melted Ti-6Al-4V." Materials 18.7 (2025): 1472. 30] Bai, Yiting, Baiqian Gu, and Chao Tang. "Enhancing real-time patient monitoring in intensive care units with deep learning and the internet of things." Big Data (2025).