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Abstract-The advancement of driverless cars relies on accurate steering angle prediction to
ensure safe and efficient navigation. This work tries to create a deep learning models that
minimizes prediction errors while maintaining computational efficiency. The primary objective
is to enhance steering control by leveraging advanced neural network architectures. Deep
learning models—including EfficientNetV2, EfficientNetV2B3, Xception, and VGG19—were
trained on a driving scenario dataset to attain this. Evaluation of the models started with three
key performance criteria: loss, mean absolute error (MAE), and mean squared error—MSE.
Every model was tuned to maximize generalization and feature extraction therefore
guaranteeing strong performance in practical settings. With the lowest error rates (Loss: 0.0110,
MAE: 0.0798, MSE: 0.0110), Xception showed great performance among the models tested,
therefore demonstrating great accuracy in steering angle predictions. The outcomes underline
how much deep learning improves the precision of autonomous car control systems. This work
effectively meets its goal by using a very effective model that raises dependability and forecast
accuracy. Future research will investigate methods of real-time deployment and further
optimization strategies to improve autonomous car decision-making capacity.

Keywords-Driverless Cars, Autonomous Driving, Deep Learning, Steering Angle
Prediction and Xception Model.
1. Introduction

Promising improved safety, efficiency, and convenience, self-driving cars are fast changing the
scene of modern transportation. Using deep learning, autonomous cars have advanced
algorithms that let them negotiate safely without human assistance, make judgments in real-
time, and analyze challenging surroundings[1], [2]. A subtype of artificial intelligence (Al), deep
learning processes enormous volumes of sensor data—including pictures, lidar, radar, GPS
inputs—using neural networks. These networks examine patterns, identify objects, and
remarkably accurately predict possible threats by copying human cognitive processes. Self-
driving cars greatly increase safety since they help to lower human mistakes that sometimes
cause collisions.
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Figure 1 Self-driving cars

The World Health Organization (WHO) estimates that human mistake causes a great share of
traffic mishaps. Through constant monitoring, fast reaction times, and the removal of distracted
or intoxicated driving, autonomous cars are meant to reduce these dangers. Deep learning
models learn constantly from fresh data, gradually improving their performance and hence
increasing general road safety. For senior people, those without access to conventional
transportation, and those with impairments, self-driving cars provide more mobility[3]-[5].
Emerging as feasible substitutes for traditional transportation choices are autonomous ride-
sharing companies and on-demand self-driving taxis. Self-driving vehicles help to improve
urban mobility by easing traffic congestion and improving traffic flow, hence lowering
greenhouse gas emissions. Autonomous vehicles can detect lanes, people, and other vehicles
thanks in great part to Models of deep learning comprising convolutional neural networks
(CNNSs) and recurrent neural networks (RNNs). Combining data from several sources, sensor
fusion methods produce a complete awareness of the surrounding environment[6]—[9].
Furthermore, by modeling several driving situations and learning best answers, reinforcement
learning methods help in decision-making. Notwithstanding considerable progress, general
adoption of self-driving technology still faces challenges. Important factors influencing the
acceptance of autonomous cars are ethical questions, legislation, and public opinion[10]-[12].
Deep learning models' reliability and robustness in dynamic and uncertain environments must
be guaranteed by continuous study and improvement. Deep learning self-driving cars are
revolutionizing travel by raising mobility, boosting safety, and reducing environmental impact.
As long-standing issues are resolved by continuous technological advancements, autonomous
automobiles have the power to transform metropolitan settings and rethink the future of
transportation. By means of collaboration among researchers, politicians, and corporate leaders,
one can realize a safer and more efficient transportation environment[13]-[17].

1.1 Significance and Objectives of the Research Exploration

The changing prospects of deep learning-powered self-driving cars point to the relevance of
this work. Autonomous vehicles help to significantly increase road safety by lowering human
error, a main cause of traffic accidents. Using state-of- the-art neural network technologies,
these cars can grasp sensor data, make real-time decisions, and alter with changing
environments. For those with limited access to conventional transportation options, such the
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elderly and those with disabilities, this technological advancement not only provides safety
travel but also improves mobility[18]-[20]. Integration of self-driving cars can help to reduce
urban congestion, lessen carbon emissions, and maximize traffic flow by means of intelligent
routing and vehicle-to--vehicle communication. Notable are also the financial benefits, which
could assist to reduce gasoline use, accident costs, and expenses of inadequate transit
infrastructure. Research on these innovations will enable technology developers, legislators,
and automakers to have perceptive understanding[21]-[23]. The main objectives of this work
are to investigate the application of deep learning in enhancing the safety and dependability of
self-driving cars, assess their impact on urban mobility and transportation infrastructure, and
evaluate their technological difficulties and ethical issues related with their implementation.
Moreover, the research aims to provide recommendations for improving autonomous car
algorithms and supporting cooperation among technological actors and authorities. By
addressing these objectives, the study guarantees responsible use of self-driving cars and
ongoing expansion of transportation, therefore supporting the future of vehicles[24]-[26].

1.1.1 Highlighting the Significance of the Research

With self-driving cars, deep learning for enhanced safety and mobility is revolutionizing
transportation. By deploying strong neural networks, autonomous automobiles greatly reduce
human errors—a major contributing cause to traffic accidents. This system provides safer roads
by means of real-time decision-making and adaptive routing. Moreover, self-driving cars
improve mobility for those with limited access to traditional transportation as well as for elderly
persons and those with impairments[27], [28]. The environmental effect is noteworthy since
improved traffic flow and less congestion lower carbon emissions. Economically, good fuel
economy and less accidents equate to savings. This study provides insightful information for
policymakers and technology developers to direct responsible deployment of autonomous
cars[29]. This study supports the creation of creative transportation systems by tackling safety,
mobility, and sustainability, so helping to create a safer, more accessible, and efficient future in
metropolitan and suburban contexts[30].

By enhancing steering angle prediction using deep learning, this work significantly advances
driverless automobile technologies. Safe, quick, dependable autonomous driving depends on
accurate steering control. Through bettering neural network architectures, this work lowers
prediction mistakes and improves real-time decision-making for self-driving systems. The
results help to create intelligent navigation systems, therefore reducing the possibility of
mishaps and so enhancing road safety. Moreover, the suggested method helps to lower
computing complexity, which increases its practicality for actual implementation. Future
developments in intelligent transportation systems and driverless car technologies are grounded
in this work.

2. Literature Review

Chen 2021 et al. [31] This study Integrating a particle filter (PF) with deep neural network
(DNN) predictions improves visual odometry (VO) robustness. For maximum accuracy, the PF
employs motion prediction categorization and uncertainty evaluation. An interval DNN
prediction method guarantees real-time performance. Experiments show Dbetter tracking
accuracy and robustness than current approaches.

Shirley 2021 et al. [32] This study looks at evacuating carless households during hurricanes
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using privately owned autonomous vehicles (AVs). Simulations and survey data show that all
houses in need might be evacuated with 30% AV market penetration. AVs could be a consistent
addition to conventional evacuation strategies, therefore improving the effectiveness of
emergency response.

Interdisciplinary Journal
of Information, Knowledge,
and Management

Lin 2021 et al. [33]This study proposes a framework to analyze and predict mind wandering
(MW) in drivers using real-life driving data. By examining personal, contextual, and in-vehicle
factors, the study demonstrates that these factors improve MW forecast accuracy. Gradient
Boosting Decision Tree algorithms outperform other methods, enhancing traffic safety
predictions.

Huang 2021 et al. [34] This work proposes a driving state evaluation method based on
overtaking frequency (OTF) for self-driving cars. Combining with the deep deterministic policy
gradient (DDPG) approach maximizes safety and efficiency. Simulations in highway settings
verify enhanced maneuverability and safety for driverless cars.

Wang 2021 et al. [35] Based on risk homeostasis theory, this work developed a car-following
model integrating safety margin (SM) as a risk component. Behavior was much influenced by
ADAS and driving experience. Genetic algorithms helped to calibrate the parameters. It
displayed less RMSE than the GHR model, therefore improving driving behavior modeling.
Next studies will look at driving style.

Table.1 Surveys relevant existing work

Author / Year Method Research gap Controversies References
Zaghari /2021 Behavioral Limited focus on Ethical concerns, [36]
cloning with real-world safety risks, liability
LSV-DNN for autonomous driving | issues, and
autonomous behavior and algorithmic decision-
driving. obstacle detection. making transparency.
Zhou/2020 recurrent neural Not much study on Debates on [37]
network model. inverse autonomous driving
reinforcement safety, ethics,
learning-based regulation, and
tailored autonomous | human behavior.
driving
Fang/2020 Regression model | Limited sample size | Ethical dilemmas, [38]
in autonomous safety concerns,
driving decision- liability issues, Al
making using Al. decision-making
conflicts.
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Li/2020 convolutional Lack of industry- Privacy concerns, [39]
neural network specific helmet accuracy limitations,
(CNN) detection solutions and real-time
using deep learning. | detection reliability
debates.
Chirag NVIDIA CNN Lack of real-world Ethical concerns, [40]
Sharma/2020 model. testing and liability issues, and
generalization in data privacy in
simulations. autonomy.

3. Research Methodology

This work improves driverless automobile steering angle prediction using a deep learning-based
method. Driving situations let multiple convolutional neural network (CNN) architectures—
including EfficientNetV2, EfficientNetV2B3, Xception, and VGG19—be trained. The premise
for model evaluation was key performance indicators including mean absolute error (MAE),
loss, and mean squared error—MSE. Hyperparameter change, augmentation, and data
preparation helped to increase model performance. To guarantee generalization and
dependability, the trained models were put under several scenarios. The last findings underline
how well deep learning may improve the stability and accuracy of autonomous car control
systems.

Data Collection

Acquire diverse dataset, ensure

balance, prevent bias.
EDA (Exploratory Data

Analysis)

Visualize, detect, identify,

analyse, correlations.
Data preprocessing

Remove paths, convert, crop,

blur, resize, normalize images. Model Training & Evaluation

Train model, optimize
parameters, split dataset, evaluate
using MSE, validation accuracy.

Dataset balancing

Analyse, categorize, limit, and
remove excess steering samples.

Figure 2 Proposed Flowchart
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3.1 Data Collection

The dataset for training the driverless car model was sourced from [41] provided photos taken
from a front-facing camera mounted on a vehicle together with matching steering angle labels
for the dataset used to teach the driverless car model. Real-world training is well suited for this
dataset since it covers a broad spectrum of driving scenarios including several road
environments, lighting variables, weather fluctuations, and road curvatures. Different scenarios
enable the model to manage real-world complexity including quick curves, sudden barriers, and
different road textures, therefore facilitating improved generalization. Every picture frame presents an
accurate portrayal of actual driving conditions, which lets the model convert visual input to exact
steering decisions. Moreover included in the dataset are required metadata, which is absolutely essential
for data organization and structure before preparation. Avoiding bias towards straight-path driving
required a balanced dataset achieved by way of examination of the distribution of steering angles. Any
imbalance in turns instead of straight motions could lead to poor model performance in conditions
requiring frequent steering corrections. As such, the dataset was examined to verify that it
contained sufficient variation of turning angles, which is required for learning robust steering
behaviors. Different driving behaviors help the program to generate reliable projections under
many road conditions. Since it guarantees that it learns from a realistic and well-organized
collection of driving circumstances to improve its decision-making capacity, this dataset offers
the foundation for developing a deep learning-based steering control model.

3.3 Data Preprocessing and Balancing

Ensuring high-quality data for training the self-driving car model depends on the preprocessing
stage, so it was absolutely important. Raw steering angle values in the dataset demanded
improvement prior to model development. First, the removePath() tool eliminated extraneous
file paths such that just pertinent data remained for additional use. The imbalance in steering
angle distribution in autonomous driving datasets is one of the main difficulties since most of
the data relates to straight-road scenarios and can cause possible bias in model predictions.
Steering angles were divided into 25 bins to help to solve this problem by allowing a disciplined
arrangement of several turning angles. Any extra data over a maximum threshold of 500
samples per bin was eliminated, therefore guaranteeing that the dataset kept an even distribution
of turns and straight lines. This stage is crucial to prevent the model from overfitting to straight-
driving situations and increase its capacity to generalize over many road conditions.

By means of a histogram analysis of steering angles—which visually distinguished
overrepresented and underrepresented groups—dataset balancing was significantly improved.
Originally dominating the dataset, straight-driving situations could lead to underperformance
of the model during turns. The model was trained on a wide spectrum of driving conditions by
excluding too straight-driving samples and preserving a balanced representation of several
steering angles, hence increasing its adaptability to real-world surroundings. The balancing
approach guarantees that the model responds dynamically to changing driving conditions and
does not get biassed toward straight routes.

The image routes and matching steering values were arranged into pairs and kept as NumPy
arrays for effective data handling to ready the final dataset. Training and validation sets were
then created from these ordered data pairings, therefore enabling the model to learn from a
balanced dataset while under evaluation on unaccustomed data. These preprocessing and
balancing methods have their rationale in their capacity to raise model resilience. Binning
steering angles guarantees organized learning; threshold-based sample filtering inhibits
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overfitting to dominant driving habits. This method improves the capacity of the model to
produce correct steering predictions under different circumstances, therefore enabling more
consistent and flexible autonomous driving performance.

Preprocessing & Balancing Pseudocode

# Function to Remove Unnecessary File Paths
Function removePath(file_path):

Extract filename from file_path

Return filename
End Function

# Apply Path Cleaning to Dataset Columns
For each column in ['center’, 'left’, 'right] of dataset:

Apply removePath function to remove unnecessary file paths
End For

# Function to Load Image Paths and Steering Values
Function loadImageSteering(datadirectory, dataset):
Initialize imagePath list
Initialize steeringPath list
For each row in dataset:
Append image path to imagePath list
Append corresponding steering value to steeringPath list
End For
Return imagePath, steeringPath
End Function

# Function for Image Preprocessing
Function imagePreprocessing(img_path):
Load image from img_path
If image is grayscale:
Convert to RGB
End If
Crop the region of interest
Convert image to YUV color space
Apply Gaussian blur for noise reduction
Resize image to (200, 66)
Normalize pixel values to range [0, 1]
Return preprocessed image
End Function

# Apply Image Preprocessing to Training Data
For each img in x_train:

Apply imagePreprocessing function
End For

# Dataset Balancing
Create histogram of steering angles
Determine bin distribution (25 bins)
For each bin:
If bin contains more than 500 samples:
Randomly remove excess samples to limit bin to 500 samples
End If
End For

# Ensure Balanced Dataset
Store preprocessed and balanced image-steering pairs
Convert to NumPy arrays for training and validation splits
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3.3 Exploratory Data Analysis (EDA)

The distribution of the dataset and possible biases were investigated by means of exploratory
data analysis (EDA). Strong imbalance in the steering angle distribution was found by a
histogram analysis; straight-line steering values had much more frequency than turns. This
implies that the dataset's vehicles mostly moved straight, hence possible model bias results.
Steering angles were divided into 25 bins, with each bin capped at a maximum of 500 samples
to guarantee a more consistent representation and help to offset this. A density chart verified
even more the predominance of nearly zero steering angles. Numerical aspects were also
examined using boxplots, which highlighted speed and steering value outliers that were then
handled accordingly. A correlation heat map revealed minor correlations between steering,
throttle, and speed, therefore indicating little redundancy among the variables. Important for
model generalization, environmental factors including changes in lighting, occlusions, and road
textures were evaluated using image visualizations. Moreover, brightness levels were
investigated to see how they affected steering behavior, therefore enabling the identification of
any deviations. Extreme steering values resulting from mislabeling were found and addressed
as outliers meant to stop distorted learning. These EDA discoveries directed preprocessing
techniques to guarantee data balance and enhanced training effectiveness. Understanding
dataset features, biases, and feature connections helped the preprocessing procedure to be tuned
to increase model robustness, thereby boosting the steering prediction accuracy for real-world
driving conditions.
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Figure 3 Histogram analysis of steering, throttle, reverse, and speed distributions.

The histograms visualize the distribution of steering, throttle, reverse, and speed values in the dataset.
Steering and reverse exhibit strong imbalance, with most values concentrated around zero. Throttle and
speed show varied distributions, highlighting potential biases that require balancing before training.
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Density Plot of Steering, Throttle, and Speed
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Figure 4 Density plot of steering, throttle, and speed distributions.

This density plot illustrates the distribution of steering, throttle, and speed values. Steering and
throttle exhibit sharp peaks near zero, indicating significant imbalance, while speed is more
evenly spread. The visualization highlights the need for dataset balancing to ensure effective
model training.

Boxplots of Numerical Features
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Figure 5 Boxplots of numerical features: steering, throttle, reverse, and speed.

This boxplot visualizes the distribution of key driving parameters. Steering, throttle, and reverse
exhibit minimal variance with outliers, while speed shows a wider range and variability. The
presence of outliers suggests potential data imbalance, which may require preprocessing for
effective model performance.
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Correlation Heatmap
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Figure 6 Correlation heatmap of steering, throttle, reverse, and speed parameters

This heatmap visualizes the correlation between key driving features. Steering has minimal
correlation with other variables, while throttle shows a moderate positive correlation (0.46) with
speed. Reverse has a weak negative correlation with speed (-0.19). These insights help in

understanding relationships between driving inputs and vehicle dynamics.
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Figure 7 Steering Angle Distribution Histogram

This histogram represents the distribution of steering angle values in a dataset. The plot shows
that most steering angles are concentrated around 0, indicating that the vehicle primarily moves
in a straight direction. The distribution has a sharp peak at zero with relatively few extreme left
or right turns, suggesting cautious or stable driving behavior.
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Throttle vs Speed
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Figure 8 Scatter Plot of Throttle vs Speed

This scatter plot illustrates the relationship between throttle input and vehicle speed. The data points
show that a large concentration of values is observed at lower throttle values (between 0.0 and 0.3),
indicating frequent operation in this range. The speed values are widely distributed, suggesting that
speed is influenced by factors beyond just throttle, such as road conditions or external forces. The
presence of points at throttle values of 0 and 1 may indicate instances of idling or full acceleration.

3.4 Proposed Model Architecture

e Proposed Model Architecture for Steering Angle Prediction

Applying a feature extraction backbone, Squeeze-and- Excitation (SE) blocks, and an attention
mechanism to enhance steering angle prediction in self-driving automobiles, the proposed
model integrates deep learning approaches. Through a strong regression framework, the
architecture is tuned to collect hierarchical spatial information, improve useful signals, and hone
predictions.

e Feature Extraction Using Pretrained Models

Pretrained architectures—including EfficientNetV2, EfficientNetV2B3, Xception, and
VGG19—all trained on ImageNet form the foundation of the model. These models effectively
extract from input photos low-level to high-level spatial and contextual elements.
> Depthwise-separable convolutional layers ensure computational efficiency while
preserving essential spatial information.

> Global Average Pooling (GAP) is used to reduce dimensionality while retaining
feature integrity.

> Batch normalization is applied to stabilize learning and improve convergence speed.
e Feature Enhancement Using Squeeze-and-Excitation (SE) Blocks

By using a channel-wise attention method, SE blocks are included to improve the obtained
features by stressing significant information and so reducing redundant signals. The SE block
acts in the following ways:
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» Global Average Pooling (GAP): Computes feature importance across all channels.

Fully Connected Layers:

First layer deals with ReLU activation adds non-linearity.

Second layer functions Sigmoid activation to produce weight for attention.

Feature Recalibration: The recalibrated features are multiplied element-wise with
the original feature maps, amplifying crucial information.

VVV VY

e Attention Mechanism for Enhanced Feature Representation

Long-range dependencies captured by an attention method help to enhance feature learning
even more. This approach generates attention scores by means of a query-key attention
operation, therefore optimizing feature interactions:
» Utilizing trainable weight matrices, compute Query (Q) and Key (K) transformations.
» Calculate attention scores by first softmax normalizing after dot product of Q and K.
» Create weighted feature representations by means of value (V) attention scores applied
with regard to relevance.
» Change the feature space such that the model becomes more sensitive to important
steering cues.
e Regression Output for Steering Angle Prediction

The last feature representation passes through a completely connected layer producing the
expected steering angle:
> One neuron with a linear activation function makes up the output layer, therefore
guaranteeing continuous value prediction.
> To stop overfitting, a 0.5 dropout layer is used.

e Model Training and Evaluation

Twenty percent of the dataset is used for testing and eighty percent for training. Images go
through preprocessing covering cropping, YUV color space conversion, Gaussian blur
application, and normalizing. The training stream comprises of:

> Optimizer: Adam (adaptive learning rate).

Loss Function: Mean Squared Error (MSE).
Metrics: Mean Absolute Error (MAE) and MSE.
Batch Size: 32.

vV V V V

Epochs: 50, with a learning rate scheduler decreasing at 10 and 20 epochs to enhance
convergence.

This ordered framework efficiently collects, enriches, and refines deep visual information,
hence enhancing the accuracy of steering angle forecasts and advancing self-driving perception
models.
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Table 2 Hyperparameter Details

Hyperparameter Value

Models \E/f(;i(c;iflsgtNetVZ, EfficientNetV2B3, Xception,

Input Shape (66, 200, 3)

Base Model EfficientNetV2 / EfficientNetV2B3 / Xception /
VGG19 (Pretrained on ImageNet)

Optimizer Adam

Loss Function

Mean Squared Error (MSE)

Batch Size

32

Activation Function

ReLU (except output layer: Linear)

Dropout Rate

0.5 (in fully connected layers)

Pooling Type

Global AveragePooling2D

Batch Normalization

Applied after feature extraction and dense layers

Attention Mechanism

Custom AttentionLayer for query-key attention

Squeeze-and-Excitation Block

Applied after feature extraction to enhance
channel-wise features

Feature Extraction

EfficientNetV2 / EfficientNetVV2B3 / Xception /
VGG19

Metrics Used

MSE, MAE

Number of Epochs

50 (Adaptive learning rate with decay at 10 and
20 epochs)

Learning Rate Schedule

Initial: 1e-3, reduced by 0.1 at 10 epochs, 0.01
at 20 epochs
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1) Adam Optimization

Adam is a strategy whose general usefulness combines elements of momentum and RMSprop
optimization techniques. The following computation provides the update rule for the angles 0
in the Adam optimization technique:

01 = Ht% (1)
Theta is the model's parameter symbol; alpha is the learning rate; m t is the exponentially
declining average of previous gradients; v t is the exponentially declining average for past
squared gradients; epsilon has the small constant guaranteeing division by zero using the Adam
optimization update method.

2) RelLU

Often seen in neural networks, the rectified linear unit—also called ReLU—is an activation
function. Should the input be positive, it returns the current value straight forward; ought to it
be negative, it returns zero. ReLU not only encourages sparsity in activations but also aids to
tackle the vanishing gradient problem during learning. Deep learning systems find this common
choice since it is both straightforward and efficient.

f(x) = max(0, x) )
Here x is the function's input; f(x) is its output. The ReL U function either returns zero or positive
(x) inputs directly straight-forwardly. Since they promote sparsity and reduces the impact of the
vanishing gradient problem, neural networks largely rely on this fundamental piecewise-linear
function for training.

3) Softmax

Because it helps to standardize the scores dependent on input, softmax is a basic element of
neural networks. For every input value, its computation is divide the exponential by the total of
all the exponentials. This normalizing method guarantees that the output values lie between
zero and one, therefore enabling one to correctly represent probability. Softmax helps to
simplify tasks involving categorization as the output of the network can now be understood as
the probability of each class. In machine learning, task depend on neural network predictions;
so, softmax is a required tool to convert those predictions into useful probability.

Xt

Softmax(x;) = ﬁ (3)
]e

4. Result & Discussion

Using Loss, Mean Absolute Error (MAE), as well as Mean Squared Error (MSE) as main

criteria, the performance of several models for steering angle prediction within the driverless

car system was assessed. The outcome are compiled in the table below:

e Loss Function: Calculates the discrepancy in model forecasts, therefore guiding the
optimization of learning.

1 . .
Loss = - iz1 Yi.log(Yi) 4)
e Mean Absolute Error (MAE): Calculates, from expected to actual values, an average
absolute difference using:

1
MAE =237 |x; - x| (5)
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e Mean Squared Error (MSE): Squares variations between expected and actual values, so
lowering significant mistakes, given by:

MSE = -3, (Y; — %) (6)
Table 3 Performance Evaluation of Proposed Models
Model Loss MAE MSE
EfficientNetV/2 0.0726 0.2004 0.0726
EfficientNetV2B3 0.0654 0.1875 0.0654
Xception 0.0110 0.0798 0.0110
VGG19 0.0563 0.1757 0.0563

Performance Comparison of Models
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Figure 9 Performance Graph of Proposed Models

Table Performance Evaluation of Proposed Models shows the Xception model to show the best
general performance. Its much lower scores in all three performance measures—Iloss (0.0110),
mean absolute error (MAE), and mean squared error—MSE—draw this conclusion. Xception
is the most dependable methodology for guiding angle estimate in autonomous automobiles
since lower values for these measures point to more accurate forecasts.With EfficientNetV2B3
performing better than EfficientNetV2 in all three measures, both EfficientNetV2 and its
variation EfficientNetVV2B3 exhibit competitive performance. Higher MAE and MSE values in
both models, however, indicate that their forecasts differ more from real values than in
Xception. VGG19 falls short of Xception's accuracy even though it beats EfficientNetV2 and
EfficientNetV2B3.Xception's depthwise separable convolutions, low computational
complexity, and strong feature extraction power help to explain its outstanding performance.
These benefits help it to more successfully learn complex patterns in steering angle predictions
than in other models. Xception is thus the most appropriate model for practical implementation
since it provides better precision, lower mistake rates, and greatest performance in autonomous
driving uses.
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Figure 10 MAE MSE graph of Xception model

The Mean Absolute Error (MAE) and Mean Squared Error (MSE) of the Xception model across
100 epochs are shown graphically. Both measures reveal a notable drop, which stabilizes about
60 epochs and points to good learning. The declining trend points to better steering angle
prediction, therefore verifying the accuracy and resilience of the model in applications for
driverless cars.

Table 4 Comparative Analysis Between Existing Work with Proposed Best model

Model Loss MAE MSE Ref.
[42]

NVIDIA PilotNet | 0.0205 0.0902 0.0205

ResNet-50 0.0153 0.0850 0.0153 [43]

InceptionV3 0.0187 0.0885 0.0187 [44]

Xception 0.0110 0.0798 0.0110
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Comparative Performance Analysis of Models

N [oss
MAE
MSE

0.061

wn
]
=2
©
=

0.041

0.021

0.00 J l I . .

NVIDIA PilotNet ResNet-50 InceptionV3 Xception
Models

Among the models, Xception shows the lowest Loss, MAE, and MSE values, therefore
demonstrating exceptional performance in tasks involving steering angle prediction.
Higher mistake metrics in NVIDIA PilotNet, a trailblazing end-to--end learning model for self-
driving cars, point to room for development over Xception.Though they still lack Xception's
accuracy, ResNet-50 and InceptionVV3 models—known for their deep architectures and feature
extraction powers—do better than PilotNet.Based on its reduced error measurements, the
suggested Xception model beats current models in the field of autonomous driving. It is a strong
choice for guiding angle prediction activities since its architecture efficiently catches
complicated patterns in driving data.

5. Conclusion

This work sought to maximize steering angle prediction to build an effective deep learning
model for autonomous driving. Improving prediction accuracy while lowering mistakes was the
main goal in order to guarantee real-time applicability in autonomous systems. Many deep
learning models— Train and evaluate EfficientNetV2, EfficientNetV2B3, Xception, as well as
VGG19 based on Loss, Mean Absolute Error (MAE), as well as Mean Squared Error (MSE).
Among them, Xception showed the lowest error metrics (Loss: 0.0110, MAE: 0.0798, MSE:
0.0110), hence far beating the other models.Xception's superiority was further confirmed by a
comparison study including current state-of- the-art models ( NVIDIA PilotNet, ResNet-50,
and InceptionV3). Using depthwise separable convolutions helped it to perform the best by
lowering computational complexity while maintaining great accuracy. This work effectively
meets its aim by suggesting a model that greatly increases steering angle prediction, hence
improving the dependability of autonomous driving systems. The results verify that Xception
is the best option for practical implementation since it strikes a compromise between efficiency,
accuracy, and computational feasibility. To maximize decision-making in autonomous
navigation even more, future studies could investigate hybrid models and reinforcement
learning approaches.
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