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   Abstract-The advancement of driverless cars relies on accurate steering angle prediction to 

ensure safe and efficient navigation. This work tries to create a deep learning models that 

minimizes prediction errors while maintaining computational efficiency. The primary objective 

is to enhance steering control by leveraging advanced neural network architectures. Deep 

learning models—including EfficientNetV2, EfficientNetV2B3, Xception, and VGG19—were 

trained on a driving scenario dataset to attain this. Evaluation of the models started with three 

key performance criteria: loss, mean absolute error (MAE), and mean squared error—MSE. 

Every model was tuned to maximize generalization and feature extraction therefore 

guaranteeing strong performance in practical settings. With the lowest error rates (Loss: 0.0110, 

MAE: 0.0798, MSE: 0.0110), Xception showed great performance among the models tested, 

therefore demonstrating great accuracy in steering angle predictions. The outcomes underline 

how much deep learning improves the precision of autonomous car control systems. This work 

effectively meets its goal by using a very effective model that raises dependability and forecast 

accuracy. Future research will investigate methods of real-time deployment and further 

optimization strategies to improve autonomous car decision-making capacity. 

     Keywords-Driverless Cars, Autonomous Driving, Deep Learning, Steering Angle 

Prediction and Xception Model. 

1. Introduction 

Promising improved safety, efficiency, and convenience, self-driving cars are fast changing the 

scene of modern transportation. Using deep learning, autonomous cars have advanced 

algorithms that let them negotiate safely without human assistance, make judgments in real-

time, and analyze challenging surroundings[1], [2]. A subtype of artificial intelligence (AI), deep 

learning processes enormous volumes of sensor data—including pictures, lidar, radar, GPS 

inputs—using neural networks. These networks examine patterns, identify objects, and 

remarkably accurately predict possible threats by copying human cognitive processes. Self-

driving cars greatly increase safety since they help to lower human mistakes that sometimes 

cause collisions.  
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Figure 1 Self-driving cars 

The World Health Organization (WHO) estimates that human mistake causes a great share of 

traffic mishaps. Through constant monitoring, fast reaction times, and the removal of distracted 

or intoxicated driving, autonomous cars are meant to reduce these dangers. Deep learning 

models learn constantly from fresh data, gradually improving their performance and hence 

increasing general road safety. For senior people, those without access to conventional 

transportation, and those with impairments, self-driving cars provide more mobility[3]–[5]. 

Emerging as feasible substitutes for traditional transportation choices are autonomous ride-

sharing companies and on-demand self-driving taxis. Self-driving vehicles help to improve 

urban mobility by easing traffic congestion and improving traffic flow, hence lowering 

greenhouse gas emissions. Autonomous vehicles can detect lanes, people, and other vehicles 

thanks in great part to Models of deep learning comprising convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs). Combining data from several sources, sensor 

fusion methods produce a complete awareness of the surrounding environment[6]–[9]. 

Furthermore, by modeling several driving situations and learning best answers, reinforcement 

learning methods help in decision-making. Notwithstanding considerable progress, general 

adoption of self-driving technology still faces challenges. Important factors influencing the 

acceptance of autonomous cars are ethical questions, legislation, and public opinion[10]–[12]. 

Deep learning models' reliability and robustness in dynamic and uncertain environments must 

be guaranteed by continuous study and improvement. Deep learning self-driving cars are 

revolutionizing travel by raising mobility, boosting safety, and reducing environmental impact. 

As long-standing issues are resolved by continuous technological advancements, autonomous 

automobiles have the power to transform metropolitan settings and rethink the future of 

transportation. By means of collaboration among researchers, politicians, and corporate leaders, 

one can realize a safer and more efficient transportation environment[13]–[17]. 

1.1 Significance and Objectives of the Research Exploration 

The changing prospects of deep learning-powered self-driving cars point to the relevance of 

this work. Autonomous vehicles help to significantly increase road safety by lowering human 

error, a main cause of traffic accidents. Using state-of- the-art neural network technologies, 

these cars can grasp sensor data, make real-time decisions, and alter with changing 

environments. For those with limited access to conventional transportation options, such the 
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elderly and those with disabilities, this technological advancement not only provides safety 

travel but also improves mobility[18]–[20]. Integration of self-driving cars can help to reduce 

urban congestion, lessen carbon emissions, and maximize traffic flow by means of intelligent 

routing and vehicle-to--vehicle communication. Notable are also the financial benefits, which 

could assist to reduce gasoline use, accident costs, and expenses of inadequate transit 

infrastructure. Research on these innovations will enable technology developers, legislators, 

and automakers to have perceptive understanding[21]–[23]. The main objectives of this work 

are to investigate the application of deep learning in enhancing the safety and dependability of 

self-driving cars, assess their impact on urban mobility and transportation infrastructure, and 

evaluate their technological difficulties and ethical issues related with their implementation. 

Moreover, the research aims to provide recommendations for improving autonomous car 

algorithms and supporting cooperation among technological actors and authorities. By 

addressing these objectives, the study guarantees responsible use of self-driving cars and 

ongoing expansion of transportation, therefore supporting the future of vehicles[24]–[26]. 

 

    1.1.1 Highlighting the Significance of the Research 

With self-driving cars, deep learning for enhanced safety and mobility is revolutionizing 

transportation. By deploying strong neural networks, autonomous automobiles greatly reduce 

human errors—a major contributing cause to traffic accidents. This system provides safer roads 

by means of real-time decision-making and adaptive routing. Moreover, self-driving cars 

improve mobility for those with limited access to traditional transportation as well as for elderly 

persons and those with impairments[27], [28]. The environmental effect is noteworthy since 

improved traffic flow and less congestion lower carbon emissions. Economically, good fuel 

economy and less accidents equate to savings. This study provides insightful information for 

policymakers and technology developers to direct responsible deployment of autonomous 

cars[29]. This study supports the creation of creative transportation systems by tackling safety, 

mobility, and sustainability, so helping to create a safer, more accessible, and efficient future in 

metropolitan and suburban contexts[30]. 

By enhancing steering angle prediction using deep learning, this work significantly advances 

driverless automobile technologies. Safe, quick, dependable autonomous driving depends on 

accurate steering control. Through bettering neural network architectures, this work lowers 

prediction mistakes and improves real-time decision-making for self-driving systems. The 

results help to create intelligent navigation systems, therefore reducing the possibility of 

mishaps and so enhancing road safety. Moreover, the suggested method helps to lower 

computing complexity, which increases its practicality for actual implementation. Future 

developments in intelligent transportation systems and driverless car technologies are grounded 

in this work. 

2. Literature Review 

Chen 2021 et al. [31] This study Integrating a particle filter (PF) with deep neural network 

(DNN) predictions improves visual odometry (VO) robustness. For maximum accuracy, the PF 

employs motion prediction categorization and uncertainty evaluation. An interval DNN 

prediction method guarantees real-time performance. Experiments show better tracking 

accuracy and robustness than current approaches. 

Shirley 2021 et al. [32] This study looks at evacuating carless households during hurricanes 
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using privately owned autonomous vehicles (AVs). Simulations and survey data show that all 

houses in need might be evacuated with 30% AV market penetration. AVs could be a consistent 

addition to conventional evacuation strategies, therefore improving the effectiveness of 

emergency response. 

Lin 2021 et al. [33]This study proposes a framework to analyze and predict mind wandering 

(MW) in drivers using real-life driving data. By examining personal, contextual, and in-vehicle 

factors, the study demonstrates that these factors improve MW forecast accuracy. Gradient 

Boosting Decision Tree algorithms outperform other methods, enhancing traffic safety 

predictions. 

Huang 2021 et al. [34] This work proposes a driving state evaluation method based on 

overtaking frequency (OTF) for self-driving cars. Combining with the deep deterministic policy 

gradient (DDPG) approach maximizes safety and efficiency. Simulations in highway settings 

verify enhanced maneuverability and safety for driverless cars. 

Wang 2021 et al. [35] Based on risk homeostasis theory, this work developed a car-following 

model integrating safety margin (SM) as a risk component. Behavior was much influenced by 

ADAS and driving experience. Genetic algorithms helped to calibrate the parameters. It 

displayed less RMSE than the GHR model, therefore improving driving behavior modeling. 

Next studies will look at driving style. 

Table.1 Surveys relevant existing work 

Author / Year Method Research gap Controversies References 

Zaghari /2021  Behavioral 

cloning with 

LSV-DNN for 

autonomous 

driving. 

Limited focus on 

real-world 

autonomous driving 

behavior and 

obstacle detection. 

Ethical concerns, 

safety risks, liability 

issues, and 

algorithmic decision-

making transparency. 

[36] 

Zhou/2020  recurrent neural 

network model. 

Not much study on 

inverse 

reinforcement 

learning-based 

tailored autonomous 

driving 

Debates on 

autonomous driving 

safety, ethics, 

regulation, and 

human behavior. 

[37] 

Fang/2020 Regression model  Limited sample size 

in autonomous 

driving decision-

making using AI. 

Ethical dilemmas, 

safety concerns, 

liability issues, AI 

decision-making 

conflicts. 

[38] 
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Li/2020  convolutional 

neural network 

(CNN)  

Lack of industry-

specific helmet 

detection solutions 

using deep learning. 

Privacy concerns, 

accuracy limitations, 

and real-time 

detection reliability 

debates. 

[39] 

Chirag 

Sharma/2020 
NVIDIA CNN 

model. 

Lack of real-world 

testing and 

generalization in 

simulations. 

Ethical concerns, 

liability issues, and 

data privacy in 

autonomy. 

[40] 

3. Research Methodology 

This work improves driverless automobile steering angle prediction using a deep learning-based 

method. Driving situations let multiple convolutional neural network (CNN) architectures—

including EfficientNetV2, EfficientNetV2B3, Xception, and VGG19—be trained. The premise 

for model evaluation was key performance indicators including mean absolute error (MAE), 

loss, and mean squared error—MSE. Hyperparameter change, augmentation, and data 

preparation helped to increase model performance. To guarantee generalization and 

dependability, the trained models were put under several scenarios. The last findings underline 

how well deep learning may improve the stability and accuracy of autonomous car control 

systems. 

 

 
Figure 2 Proposed Flowchart 
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3.1 Data Collection 

The dataset for training the driverless car model was sourced from [41] provided photos taken 

from a front-facing camera mounted on a vehicle together with matching steering angle labels 

for the dataset used to teach the driverless car model. Real-world training is well suited for this 

dataset since it covers a broad spectrum of driving scenarios including several road 

environments, lighting variables, weather fluctuations, and road curvatures. Different scenarios 

enable the model to manage real-world complexity including quick curves, sudden barriers, and 

different road textures, therefore facilitating improved generalization. Every picture frame presents an 

accurate portrayal of actual driving conditions, which lets the model convert visual input to exact 

steering decisions. Moreover included in the dataset are required metadata, which is absolutely essential 

for data organization and structure before preparation. Avoiding bias towards straight-path driving 

required a balanced dataset achieved by way of examination of the distribution of steering angles. Any 

imbalance in turns instead of straight motions could lead to poor model performance in conditions 

requiring frequent steering corrections. As such, the dataset was examined to verify that it 

contained sufficient variation of turning angles, which is required for learning robust steering 

behaviors. Different driving behaviors help the program to generate reliable projections under 

many road conditions. Since it guarantees that it learns from a realistic and well-organized 

collection of driving circumstances to improve its decision-making capacity, this dataset offers 

the foundation for developing a deep learning-based steering control model. 

3.3 Data Preprocessing and Balancing 
Ensuring high-quality data for training the self-driving car model depends on the preprocessing 

stage, so it was absolutely important. Raw steering angle values in the dataset demanded 

improvement prior to model development. First, the removePath() tool eliminated extraneous 

file paths such that just pertinent data remained for additional use. The imbalance in steering 

angle distribution in autonomous driving datasets is one of the main difficulties since most of 

the data relates to straight-road scenarios and can cause possible bias in model predictions. 

Steering angles were divided into 25 bins to help to solve this problem by allowing a disciplined 

arrangement of several turning angles. Any extra data over a maximum threshold of 500 

samples per bin was eliminated, therefore guaranteeing that the dataset kept an even distribution 

of turns and straight lines. This stage is crucial to prevent the model from overfitting to straight-

driving situations and increase its capacity to generalize over many road conditions.  

By means of a histogram analysis of steering angles—which visually distinguished 

overrepresented and underrepresented groups—dataset balancing was significantly improved. 

Originally dominating the dataset, straight-driving situations could lead to underperformance 

of the model during turns. The model was trained on a wide spectrum of driving conditions by 

excluding too straight-driving samples and preserving a balanced representation of several 

steering angles, hence increasing its adaptability to real-world surroundings. The balancing 

approach guarantees that the model responds dynamically to changing driving conditions and 

does not get biassed toward straight routes. 

The image routes and matching steering values were arranged into pairs and kept as NumPy 

arrays for effective data handling to ready the final dataset. Training and validation sets were 

then created from these ordered data pairings, therefore enabling the model to learn from a 

balanced dataset while under evaluation on unaccustomed data. These preprocessing and 

balancing methods have their rationale in their capacity to raise model resilience. Binning 

steering angles guarantees organized learning; threshold-based sample filtering inhibits 
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overfitting to dominant driving habits. This method improves the capacity of the model to 

produce correct steering predictions under different circumstances, therefore enabling more 

consistent and flexible autonomous driving performance. 
Preprocessing & Balancing Pseudocode 

 

# Function to Remove Unnecessary File Paths   

Function removePath(file_path):   

    Extract filename from file_path   

    Return filename   

End Function   

 

# Apply Path Cleaning to Dataset Columns   

For each column in ['center', 'left', 'right'] of dataset:   

    Apply removePath function to remove unnecessary file paths   

End For   

 

# Function to Load Image Paths and Steering Values   

Function loadImageSteering(datadirectory, dataset):   

    Initialize imagePath list   

    Initialize steeringPath list   

    For each row in dataset:   

        Append image path to imagePath list   

        Append corresponding steering value to steeringPath list   

    End For   

    Return imagePath, steeringPath   

End Function   

 

# Function for Image Preprocessing   

Function imagePreprocessing(img_path):   

    Load image from img_path   

    If image is grayscale:   

        Convert to RGB   

    End If   

    Crop the region of interest   

    Convert image to YUV color space   

    Apply Gaussian blur for noise reduction   

    Resize image to (200, 66)   

    Normalize pixel values to range [0, 1]   

    Return preprocessed image   

End Function   

 

# Apply Image Preprocessing to Training Data   

For each img in x_train:   

    Apply imagePreprocessing function   

End For   

 

# Dataset Balancing   

Create histogram of steering angles   

Determine bin distribution (25 bins)   

For each bin:   

    If bin contains more than 500 samples:   

        Randomly remove excess samples to limit bin to 500 samples   

    End If   

End For   

 

# Ensure Balanced Dataset   

Store preprocessed and balanced image-steering pairs   

Convert to NumPy arrays for training and validation splits   
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3.3 Exploratory Data Analysis (EDA) 

The distribution of the dataset and possible biases were investigated by means of exploratory 

data analysis (EDA). Strong imbalance in the steering angle distribution was found by a 

histogram analysis; straight-line steering values had much more frequency than turns. This 

implies that the dataset's vehicles mostly moved straight, hence possible model bias results. 

Steering angles were divided into 25 bins, with each bin capped at a maximum of 500 samples 

to guarantee a more consistent representation and help to offset this. A density chart verified 

even more the predominance of nearly zero steering angles. Numerical aspects were also 

examined using boxplots, which highlighted speed and steering value outliers that were then 

handled accordingly. A correlation heat map revealed minor correlations between steering, 

throttle, and speed, therefore indicating little redundancy among the variables. Important for 

model generalization, environmental factors including changes in lighting, occlusions, and road 

textures were evaluated using image visualizations. Moreover, brightness levels were 

investigated to see how they affected steering behavior, therefore enabling the identification of 

any deviations. Extreme steering values resulting from mislabeling were found and addressed 

as outliers meant to stop distorted learning. These EDA discoveries directed preprocessing 

techniques to guarantee data balance and enhanced training effectiveness. Understanding 

dataset features, biases, and feature connections helped the preprocessing procedure to be tuned 

to increase model robustness, thereby boosting the steering prediction accuracy for real-world 

driving conditions. 

 

Figure 3 Histogram analysis of steering, throttle, reverse, and speed distributions. 

The histograms visualize the distribution of steering, throttle, reverse, and speed values in the dataset. 

Steering and reverse exhibit strong imbalance, with most values concentrated around zero. Throttle and 

speed show varied distributions, highlighting potential biases that require balancing before training. 
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Figure 4 Density plot of steering, throttle, and speed distributions. 

This density plot illustrates the distribution of steering, throttle, and speed values. Steering and 

throttle exhibit sharp peaks near zero, indicating significant imbalance, while speed is more 

evenly spread. The visualization highlights the need for dataset balancing to ensure effective 

model training. 

 

Figure 5 Boxplots of numerical features: steering, throttle, reverse, and speed. 

This boxplot visualizes the distribution of key driving parameters. Steering, throttle, and reverse 

exhibit minimal variance with outliers, while speed shows a wider range and variability. The 

presence of outliers suggests potential data imbalance, which may require preprocessing for 

effective model performance. 
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Figure 6 Correlation heatmap of steering, throttle, reverse, and speed parameters 

This heatmap visualizes the correlation between key driving features. Steering has minimal 

correlation with other variables, while throttle shows a moderate positive correlation (0.46) with 

speed. Reverse has a weak negative correlation with speed (-0.19). These insights help in 

understanding relationships between driving inputs and vehicle dynamics. 

 

Figure 7 Steering Angle Distribution Histogram 

This histogram represents the distribution of steering angle values in a dataset. The plot shows 

that most steering angles are concentrated around 0, indicating that the vehicle primarily moves 

in a straight direction. The distribution has a sharp peak at zero with relatively few extreme left 

or right turns, suggesting cautious or stable driving behavior. 
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Figure 8 Scatter Plot of Throttle vs Speed 

This scatter plot illustrates the relationship between throttle input and vehicle speed. The data points 

show that a large concentration of values is observed at lower throttle values (between 0.0 and 0.3), 

indicating frequent operation in this range. The speed values are widely distributed, suggesting that 

speed is influenced by factors beyond just throttle, such as road conditions or external forces. The 

presence of points at throttle values of 0 and 1 may indicate instances of idling or full acceleration. 

3.4 Proposed Model Architecture 

 Proposed Model Architecture for Steering Angle Prediction 

Applying a feature extraction backbone, Squeeze-and- Excitation (SE) blocks, and an attention 

mechanism to enhance steering angle prediction in self-driving automobiles, the proposed 

model integrates deep learning approaches. Through a strong regression framework, the 

architecture is tuned to collect hierarchical spatial information, improve useful signals, and hone 

predictions. 

 Feature Extraction Using Pretrained Models 

Pretrained architectures—including EfficientNetV2, EfficientNetV2B3, Xception, and 

VGG19—all trained on ImageNet form the foundation of the model. These models effectively 

extract from input photos low-level to high-level spatial and contextual elements. 

 Depthwise-separable convolutional layers ensure computational efficiency while 

preserving essential spatial information. 

 Global Average Pooling (GAP) is used to reduce dimensionality while retaining 

feature integrity. 

 Batch normalization is applied to stabilize learning and improve convergence speed. 

 Feature Enhancement Using Squeeze-and-Excitation (SE) Blocks 

By using a channel-wise attention method, SE blocks are included to improve the obtained 

features by stressing significant information and so reducing redundant signals. The SE block 

acts in the following ways: 
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 Global Average Pooling (GAP): Computes feature importance across all channels. 

 Fully Connected Layers: 

 First layer deals with ReLU activation adds non-linearity. 

 Second layer functions Sigmoid activation to produce weight for attention. 

 Feature Recalibration: The recalibrated features are multiplied element-wise with 

the original feature maps, amplifying crucial information. 

 Attention Mechanism for Enhanced Feature Representation 

Long-range dependencies captured by an attention method help to enhance feature learning 

even more. This approach generates attention scores by means of a query-key attention 

operation, therefore optimizing feature interactions: 

 Utilizing trainable weight matrices, compute Query (Q) and Key (K) transformations. 

 Calculate attention scores by first softmax normalizing after dot product of Q and K. 

 Create weighted feature representations by means of value (V) attention scores applied 

with regard to relevance.  

 Change the feature space such that the model becomes more sensitive to important 

steering cues. 

 Regression Output for Steering Angle Prediction 

The last feature representation passes through a completely connected layer producing the 

expected steering angle: 

 One neuron with a linear activation function makes up the output layer, therefore 

guaranteeing continuous value prediction. 

 To stop overfitting, a 0.5 dropout layer is used. 

 

 Model Training and Evaluation 

Twenty percent of the dataset is used for testing and eighty percent for training. Images go 

through preprocessing covering cropping, YUV color space conversion, Gaussian blur 

application, and normalizing. The training stream comprises of: 

 Optimizer: Adam (adaptive learning rate). 

 Loss Function: Mean Squared Error (MSE). 

 Metrics: Mean Absolute Error (MAE) and MSE. 

 Batch Size: 32. 

 Epochs: 50, with a learning rate scheduler decreasing at 10 and 20 epochs to enhance 

convergence. 

This ordered framework efficiently collects, enriches, and refines deep visual information, 

hence enhancing the accuracy of steering angle forecasts and advancing self-driving perception 

models. 
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Table 2 Hyperparameter Details 

Hyperparameter Value 

Models 
EfficientNetV2, EfficientNetV2B3, Xception, 

VGG19 

Input Shape (66, 200, 3) 

Base Model 
EfficientNetV2 / EfficientNetV2B3 / Xception / 

VGG19 (Pretrained on ImageNet) 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 

Batch Size 32 

Activation Function ReLU (except output layer: Linear) 

Dropout Rate 0.5 (in fully connected layers) 

Pooling Type GlobalAveragePooling2D 

Batch Normalization Applied after feature extraction and dense layers 

Attention Mechanism Custom AttentionLayer for query-key attention 

Squeeze-and-Excitation Block 
Applied after feature extraction to enhance 

channel-wise features 

Feature Extraction 
EfficientNetV2 / EfficientNetV2B3 / Xception / 

VGG19 

Metrics Used MSE, MAE 

Number of Epochs 
50 (Adaptive learning rate with decay at 10 and 

20 epochs) 

Learning Rate Schedule 
Initial: 1e-3, reduced by 0.1 at 10 epochs, 0.01 

at 20 epochs 
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1) Adam Optimization 

Adam is a strategy whose general usefulness combines elements of momentum and RMSprop 

optimization techniques. The following computation provides the update rule for the angles θ 

in the Adam optimization technique: 

𝜃𝑡+1 = 𝜃𝑡
𝛼∙𝑚𝑡

√𝑣𝑡+𝜖
      (1) 

Theta is the model's parameter symbol; alpha is the learning rate; m t is the exponentially 

declining average of previous gradients; v t is the exponentially declining average for past 

squared gradients; epsilon has the small constant guaranteeing division by zero using the Adam 

optimization update method. 

2) ReLU  

Often seen in neural networks, the rectified linear unit—also called ReLU—is an activation 

function. Should the input be positive, it returns the current value straight forward; ought to it 

be negative, it returns zero. ReLU not only encourages sparsity in activations but also aids to 

tackle the vanishing gradient problem during learning. Deep learning systems find this common 

choice since it is both straightforward and efficient. 

𝑓(𝑥) = max⁡(0, 𝑥)     (2) 

Here x is the function's input; f(x) is its output. The ReLU function either returns zero or positive 

(x) inputs directly straight-forwardly. Since they promote sparsity and reduces the impact of the 

vanishing gradient problem, neural networks largely rely on this fundamental piecewise-linear 

function for training. 

3) Softmax 

Because it helps to standardize the scores dependent on input, softmax is a basic element of 

neural networks. For every input value, its computation is divide the exponential by the total of 

all the exponentials. This normalizing method guarantees that the output values lie between 

zero and one, therefore enabling one to correctly represent probability. Softmax helps to 

simplify tasks involving categorization as the output of the network can now be understood as 

the probability of each class. In machine learning, task depend on neural network predictions; 

so, softmax is a required tool to convert those predictions into useful probability. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑𝑗𝑒
𝑥𝑗     (3) 

 

4. Result & Discussion 

Using Loss, Mean Absolute Error (MAE), as well as Mean Squared Error (MSE) as main 

criteria, the performance of several models for steering angle prediction within the driverless 

car system was assessed. The outcome are compiled in the table below: 

 Loss Function: Calculates the discrepancy in model forecasts, therefore guiding the 

optimization of learning. 

𝐿𝑜𝑠𝑠 = −
1

𝑚
∑ 𝒴𝑖. log⁡(𝒴𝑖)𝑚
𝑖=1     (4) 

 Mean Absolute Error (MAE): Calculates, from expected to actual values, an average 

absolute difference using: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑥|𝑛
𝑖=1        (5) 
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 Mean Squared Error (MSE): Squares variations between expected and actual values, so 

lowering significant mistakes, given by: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1            (6) 

Table 3 Performance Evaluation of Proposed Models 
Model Loss MAE MSE 

EfficientNetV2 0.0726 0.2004 0.0726 

EfficientNetV2B3 0.0654 0.1875 0.0654 

Xception 0.0110 0.0798 0.0110 

VGG19 0.0563 0.1757 0.0563 

 
Figure 9 Performance Graph of Proposed Models 

Table Performance Evaluation of Proposed Models shows the Xception model to show the best 

general performance. Its much lower scores in all three performance measures—loss (0.0110), 

mean absolute error (MAE), and mean squared error—MSE—draw this conclusion. Xception 

is the most dependable methodology for guiding angle estimate in autonomous automobiles 

since lower values for these measures point to more accurate forecasts.With EfficientNetV2B3 

performing better than EfficientNetV2 in all three measures, both EfficientNetV2 and its 

variation EfficientNetV2B3 exhibit competitive performance. Higher MAE and MSE values in 

both models, however, indicate that their forecasts differ more from real values than in 

Xception. VGG19 falls short of Xception's accuracy even though it beats EfficientNetV2 and 

EfficientNetV2B3.Xception's depthwise separable convolutions, low computational 

complexity, and strong feature extraction power help to explain its outstanding performance. 

These benefits help it to more successfully learn complex patterns in steering angle predictions 

than in other models. Xception is thus the most appropriate model for practical implementation 

since it provides better precision, lower mistake rates, and greatest performance in autonomous 

driving uses. 
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Figure 10 MAE MSE graph of Xception model 

The Mean Absolute Error (MAE) and Mean Squared Error (MSE) of the Xception model across 

100 epochs are shown graphically. Both measures reveal a notable drop, which stabilizes about 

60 epochs and points to good learning. The declining trend points to better steering angle 

prediction, therefore verifying the accuracy and resilience of the model in applications for 

driverless cars. 

Table 4 Comparative Analysis Between Existing Work with Proposed Best model 

Model Loss MAE MSE Ref. 

NVIDIA PilotNet 0.0205 0.0902 0.0205 
[42] 

ResNet-50 0.0153 0.0850 0.0153 [43] 

InceptionV3 0.0187 0.0885 0.0187 [44] 

Xception 0.0110 0.0798 0.0110 -- 
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Among the models, Xception shows the lowest Loss, MAE, and MSE values, therefore 

demonstrating exceptional performance in tasks involving steering angle prediction. 

Higher mistake metrics in NVIDIA PilotNet, a trailblazing end-to--end learning model for self-

driving cars, point to room for development over Xception.Though they still lack Xception's 

accuracy, ResNet-50 and InceptionV3 models—known for their deep architectures and feature 

extraction powers—do better than PilotNet.Based on its reduced error measurements, the 

suggested Xception model beats current models in the field of autonomous driving. It is a strong 

choice for guiding angle prediction activities since its architecture efficiently catches 

complicated patterns in driving data. 

5. Conclusion 

This work sought to maximize steering angle prediction to build an effective deep learning 

model for autonomous driving. Improving prediction accuracy while lowering mistakes was the 

main goal in order to guarantee real-time applicability in autonomous systems. Many deep 

learning models— Train and evaluate EfficientNetV2, EfficientNetV2B3, Xception, as well as 

VGG19 based on Loss, Mean Absolute Error (MAE), as well as Mean Squared Error (MSE). 

Among them, Xception showed the lowest error metrics (Loss: 0.0110, MAE: 0.0798, MSE: 

0.0110), hence far beating the other models.Xception's superiority was further confirmed by a 

comparison study including current state-of- the-art models ( NVIDIA PilotNet, ResNet-50, 

and InceptionV3). Using depthwise separable convolutions helped it to perform the best by 

lowering computational complexity while maintaining great accuracy. This work effectively 

meets its aim by suggesting a model that greatly increases steering angle prediction, hence 

improving the dependability of autonomous driving systems. The results verify that Xception 

is the best option for practical implementation since it strikes a compromise between efficiency, 

accuracy, and computational feasibility. To maximize decision-making in autonomous 

navigation even more, future studies could investigate hybrid models and reinforcement 

learning approaches.  
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